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Abstract

By 2017, one-quarter of people born in El Salvador were estimated to be living in the
U.S. We show that extreme temperatures have negatively affected agricultural produc-
tion and increased international migration. A response from agricultural landowners
has been reducing their demand for agricultural workers and substituting household
workers in their place. Contrary to findings in other settings, we do not see evidence
of reallocation to the non-agricultural sector, which partly explains the positive effects
found on international migration. We highlight how international migration is a criti-
cal response to temperature shocks when local labor markets cannot absorb displaced
workers.
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1 Introduction

The frequency and length of heat waves have increased since the middle of the twentieth

century, a trend likely to intensify in the coming decades (IPCC, 2021). This has important

implications for small farmers since ample evidence shows that extreme temperatures depress

crop yield, agricultural productivity, and agricultural income.1 If these trends persist, the

rising costs that climate change imposes on subsistence farmers – who grow crops that are

highly sensitive to extreme temperatures – could hurt hundreds of millions of people and

affect global efforts to reduce rural poverty.2

The effects of extreme temperatures can be particularly large in regions with rain-fed

agriculture and for small agricultural producers in developing countries, who seldom have

access to mechanisms that manage risk. Incomplete financial markets to manage risk in

developing countries limit the ability of households to compensate for income losses caused

by weather shocks and to protect themselves ex ante through insurance. As a consequence,

agricultural households respond in the short term to these shocks through costly strategies

such as asset sales, changes in agricultural practices, an expansion in the use of household

labor (including children), participation in subsistence activities, and migration (Rosenzweig

and Wolpin, 1993; Jayachandran, 2006; Carter and Lybbert, 2012; Hornbeck, 2012; Jessoe

et al., 2016; Aragón et al., 2021).

Our paper adds to this literature by measuring the effects of extreme temperatures on

agricultural production and by examining the complex ways in which farmers in El Salvador

1The following papers, among others, show the impact of weather shocks on agricultural production: (i)
measure weather shocks as temperature shocks or temperature shocks and other variables (e.g., rainfall):
Deschênes and Greenstone (2007), Schlenker and Roberts (2009), Schlenker and Lobell (2010), Feng et al.
(2010), Dell et al. (2014), Burke and Emerick (2016), Aragón et al. (2021), Colmer (2021), Ortiz-Bobea
et al. (2021), and Albert and Bustos (2022); and (ii) use other proxies, including rainfall, for weather
shocks: Deschênes and Greenstone (2007), Feng et al. (2010), Schlenker and Lobell (2010), Hornbeck (2012),
Hornbeck and Naidu (2014), and Ortiz-Bobea et al. (2019).

2In 2016, there were 570 million farms in 167 countries: 89 percent were family farms and the great
majority were small farms (84 percent under two hectares). Forty-nine percent were in lower-income countries
(Lowder et al., 2016).
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respond to these shocks. Our results suggest agricultural landowners respond to the shock

by lowering their demand for agricultural workers and substituting household members—

particularly women and young children—for them. It is plausible that agricultural workers

with no access to land might transfer to other sectors. Yet, we find no evidence of labor

reallocation to the non-agricultural sector. Without access to risk-management mechanisms

and in a setting where the non-agricultural sector cannot absorb displaced farm workers,

international migration becomes a key strategy to respond to the costs imposed by these

weather shocks. Our results support this hypothesis. We find a significant increase in

international migration—mostly to the United States— in response to extreme temperature

events in El Salvador. Moreover, we show that the adjustment through labor markets differs

by access to mechanisms to address risk (Jayachandran, 2006).

Our conceptual framework follows previous literature. Negative temperature shocks

are expected to reduce crop yields. In response, farmers adjust inputs accordingly to protect

agricultural income when mechanisms to address risk—such as credits or insurance—are

absent (Hornbeck, 2012; Aragón et al., 2021). In the short run, farmers have a small margin of

adjustment as some decisions on input use are irreversible. For example, farmers may adjust

their use of land and fertilizer if the planting season is not over. In addition, they may adjust

labor demand at the extensive and intensive margins by hiring fewer agricultural workers and

substituting household workers who thus increase their hours of farm work (Jayachandran,

2006; Bastos et al., 2013; Jessoe et al., 2016; Aragón et al., 2021). Agricultural workers

who lose their jobs may move to the non-agricultural sector or migrate to offset income

losses. If labor supply for the non-agricultural sector expands, wages in that sector may

decrease, with negative consequences ultimately for those workers as well (Colmer, 2021).

In contexts where labor markets are not fully integrated and/or the non-agricultural sector

cannot absorb new workers, migration might be more prevalent (Colmer, 2021). We also

test whether landownership and access to mechanisms such as credits and remittances lessen

distress migration or, on the contrary, facilitate migration by lowering its costs (Massey et
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al., 1990; Munshi, 2003; Hunter et al., 2013; Nawrotzki, 2015; Mahajan and Yang, 2020;

Clemens, 2021).

The setting of El Salvador offers several advantages for this research. First, a large

percentage of the population still earns income from agriculture, especially compared to

other Latin American countries. Agriculture is the second-largest employer (17.6 percent)

after the service sector.3 Second, a large number (87 percent) of agricultural producers

are subsistence farmers who work small land plots (on average, 1.2 hectares) and live in

contexts with incomplete markets;4 in 2017, the rural poverty rate was 50 percent.5 Third,

the country is increasingly vulnerable to extreme weather events.6 Finally, El Salvador has

a long history of migration to the United States that began during the civil war in the 1980s

and has continued ever since. In 2017, over one-quarter of the country’s population was

estimated to be living in the United States (Abuelafia et al., 2019).

Our analysis uses several data sources. To study migration, we use the Multiple Pur-

pose Household Survey (EHPM for its Spanish acronym), a nationally representative yearly

cross-sectional survey for 2009–2018. Data on agricultural production come from the Multi-

ple Purpose National Agricultural Survey (ENAMP for its Spanish acronym), a nationally

representative cross-sectional dataset of agricultural producers. Finally, temperature data

come from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface

Temperature, a data grid of one km resolution that contains weekly temperature averages

for 2001–2018. We aggregate the grid to the municipal level with a weighted mean using the

area covered.

3Percentages for the other sectors are: manufacturing, 15.6 percent; social services, 6.5 percent; con-
struction, 5.8 percent; financial services, 5.6 percent; domestic work, 5.0 percent; and other, 11 per-
cent. See https://www.mtps.gob.sv/wp-content/uploads/descargas/BoletinesEstadisticos/mtps-

boletin-laboral-mujeres-2019.pdf.
4http://www.fao.org/world-agriculture-watch/our-program/slv/en/retrievedJuly31,2020.
5https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID%20ATLAS_

Climate%20Change%20Risk%20Profile_El%20Salvador.pdf retrieved on July 31, 2020.
6For example, the number of hurricanes in Central America rose to 39 in 2000–2009 from nine in 1990–

1999. https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID%20ATLAS_

Climate%20Change%20Risk%20Profile_El%20Salvador.pdf retrieved on July 31, 2020.
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Our empirical model exploits both temporal and spatial variations in temperature

shocks during corn-growing seasons between 2009 and 2018 in El Salvador. We estimate

temperature anomalies with the historic spatial and temporal mean divided by the historic

standard deviation. This is a frequent measure employed in rainfall and developed by McKee

et al. (1993). Then, we measure extreme temperature shocks as being 2 standard deviations

(SD) above the historic mean, which can be interpreted as random draws from a climate

distribution.

Our empirical model includes municipality fixed effects to absorb time-invariant geo-

graphic characteristics, and it exploits within-municipality variation of this shock (Deschênes

and Greenstone, 2007; Feng et al., 2010; Dell et al., 2014; Jagnani et al., 2020). We also

include year fixed effects to absorb national-level shocks and interact baseline municipality

characteristics with linear time trends to account for differential pre-trends at the municipal-

ity level. We control for time-varying characteristics such as crime shocks, excessive rainfall,

and drought shocks as these are correlated with temperature shocks and may influence mi-

gration and agricultural decisions. The validity of the identification strategy rests on the

assumption that, conditional on observables and fixed effects, there are no time-varying dif-

ferences within municipalities that are correlated with the temperature shock. We perform

several robustness tests to rule out potential threats to our identification strategy. It is

meaningful to note that, since we measure the effect of temperature shocks rather than the

effect of climate change, our results should be interpreted as short-term effects rather than

long-term adjustments by agricultural producers.

We document that temperature shocks decrease production of seasonal crops, especially

corn (also known as maize, El Salvador’s main staple crop). An increase of one standard

deviation (SD) in the temperature shock reduces total agricultural production by 1.9 per-

cent and corn production per hectare by 2.9 percent. Agricultural producers adjust in the

short run by reducing labor demand for non-household agricultural workers and substituting
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household members for them. Similarly to Aragón et al. (2021) in Peru, we find that agri-

cultural producers respond to these shocks by increasing the area of land use and changing

production inputs mainly in post-harvest activities. We find no evidence of reallocation to

non-agricultural occupations but we do observe important increases in the probability of

migration to the United States. An increase of one SD in the temperature shock during

the main harvest season causes migration from corn-based agricultural households to rise

by 20.2 percent relative to the baseline mean. It is important to highlight that our analysis

captures both permanent and temporary migration, but our available data does not enable

us to differentiate between these two categories of migration. These results suggest that

temperature shocks are a major push factor for rural Salvadorean households.7

In addition, we offer suggestive evidence to support the idea that risk management

mitigates the effects of extreme temperatures. Access to remittances might help farmers to

cope with the drop in income caused by the negative shock, and we find that households

with more access to remittances are less likely to respond to the shock through reductions

in their labor demand and through international migration.

We test the robustness of our results via different strategies. First, to assess whether

the effect of the shock on migration indeed stemmed from a decline in agricultural produc-

tion, we define the shock in different time windows unrelated to the harvest season. We

find that the impact of extreme temperatures on migration only emerges from shocks during

the main harvest season. Second, we estimate a placebo test in which we randomly assign

each temperature/week observation 1,000 times and re-estimate the results. The estima-

tions confirm that our results do not occur by chance. Third, we estimate the effects for

different definitions of temperature shocks, and the results hold for all our outcomes. Fi-

nally, we gauge the robustness of our results by controlling for crime rates. By depressing

income, temperature shocks might also be strongly correlated with crime spikes (Dell et al.,

7A caveat of our data is that we cannot distinguish temporal from permanent migration, so this effect
includes both types.
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2014; Carleton and Hsiang, 2016) that have prompted migration from El Salvador and other

countries (Stanley, 1987; Clemens, 2021; Bermeo and Leblang, 2021). The magnitude and

significance of our coefficient estimates are robust when including these controls.

Our paper contributes to three strands of the literature. First, we provide evidence

on how negative temperature shocks affect agricultural production in developing countries,

thereby prompting agricultural producers to adjust in a context of incomplete risk markets

and weak non-agricultural labor markets (Guiteras, 2009; Auffhammer et al., 2012; Feng

et al., 2010; Jessoe et al., 2016; Fishman, 2016; Blakeslee and Fishman, 2018; Aragón et

al., 2021; Colmer, 2021). We expect different effects of weather shocks in developed coun-

tries, where contrary to developing countries farmers have access to financial and insurance

markets and non-agricultural sectors may absorb the laid-off agricultural workers.8 Since

developed and developing countries differ greatly, it might not be valid to extrapolate results

from developed countries to developing ones (Dell et al., 2014). Our results highlight the

role of the integration of labor markets and formal and informal risk-coping mechanisms in

developing countries in explaining the effect of temperature shocks on the decision to mi-

grate internationally (Jayachandran, 2006; Graff Zivin and Neidell, 2014; Jessoe et al., 2016;

Colmer, 2021).

Second, we add to the work on migration responses to weather shocks and natural disas-

ters by using microdata that allows us to identify the mechanisms behind these relationships.

This literature finds that negative weather shocks—including natural disasters—increase in-

ternal migration9 and emigration10 mostly for middle-income households, which have lower

8Some examples for developed countries are Deschênes and Greenstone (2007), Schlenker and Roberts
(2009), Schlenker and Lobell (2010), Hornbeck (2012), Hornbeck and Naidu (2014), Burke and Emerick
(2016), and Ortiz-Bobea et al. (2019).

9Examples of papers on internal migration are: Dillon et al. (2011), Gray and Mueller (2012a), Hornbeck
and Naidu (2014), Bastos et al. (2013), Mueller et al. (2014), Kleemans (2015), Kubik and Maurel (2016),
Thiede et al. (2016), Cai et al. (2016), Baez et al. (2017), Quiñones et al. (2021), and Mullins and Bharadwaj
(2021).

10Examples of papers on the influence of weather shocks on emigration are: Halliday (2006), Feng et
al. (2010), Gray and Mueller (2012b), Gröger and Zylberberg (2016), Marchiori et al., 2012, Gray and
Bilsborrow (2013), Bohra-Mishra et al. (2014), Nawrotzki (2015), Cattaneo and Peri (2016), Jessoe et al.
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opportunity costs of relocation and are less constrained in funding migration (Cattaneo and

Peri, 2016). Most of these papers rely on a reduced-form strategy to identify the effects of

negative weather shocks on migration but rarely delve into the mechanisms. Some papers

explore agriculture as a mechanism but use aggregate data either at the country, state, or

county level (see, e.g., Feng et al., 2010; Hornbeck, 2012; Hornbeck and Naidu, 2014; Cai

et al., 2016; and Cattaneo and Peri, 2016). Jayachandran (2006), Aragón et al. (2021), and

Colmer (2021) which use microdata for agricultural producers, are among noteworthy excep-

tions. We reinforce this literature with evidence on the role of labor markets as a transmission

mechanism for the negative impact of temperature shocks on agricultural workers, some of

who react by leaving El Salvador. Labor reallocation is an important margin of adjustment

for mitigating temperature shocks, but unlike Colmer (2021) we find that workers are not

able to move to the non-agricultural sector. Our results suggest that the non-agricultural

sector in El Salvador is not able to absorb excess supply leading people to migrate interna-

tionally, which points to distress migration. The economic environment in El Salvador with

not well-integrated markets and a small non-agricultural sector, together with low access to

formal credit explain the effect of temperature shocks on the decision to migrate interna-

tionally. This contribution holds substantial importance as it underscores the significance of

understanding the local economic conditions in order to identify the potential mechanisms

by which weather shocks impact local labor markets and migration choices.

Third, we show that access to risk-management mechanisms (such as remittances)

reduces reliance on reducing labor demand and therefore on distress migration. Our results

highlight how incomplete markets in developing countries force rural households to rely on

migration—in this case, international migration—to counteract declines in income. It is

vital to understand the interactions of these elements in order to design policies to prevent

distress migration and facilitate intentional migration from regions where agriculture may

no longer be feasible. Migration might lead to better short-term and long-term outcomes

(2016), Mahajan and Yang (2020), and Bermeo and Leblang (2021).
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if it is voluntary and not for lack of better coping mechanisms. Under certain conditions,

however, it can prompt persistent negative effects for both migrants and the households they

leave behind. Financial and insurance mechanisms should be tailored to the specific needs

of small farmers in order to mitigate the negative impacts of extreme weather events and to

prevent distress migration.

Finally, our findings on migration responses to declines in agricultural production and

labor demand augment the literature on the consequences of climate change and the strate-

gies households use to address them, including international migration. Even though we

focus on short-term effects and do not consider long-term strategies, our results verify some

adaptive responses of farmers to increasingly frequent extreme weather events. Climate

change caused by global emissions mostly affects households in developing countries that

consequently seek refuge, when possible, in developed countries. It is therefore a global

responsibility to address the harmful effects of climate change.

The rest of the paper proceeds as follows: section 2 provides information about El

Salvador. Section 3 describes our data, section 4 explains our empirical strategy, and section

5 presents our results. Section 6 concludes.

2 Background

2.1 Extreme Weather and Temperature Shocks in El Salvador

The frequency of extreme weather events in El Salvador, particularly droughts and high

temperatures, has intensified during recent decades with three extreme droughts in the last

10 years alone. In 2012, a severe and prolonged drought reduced coffee production by 70

percent. Between 2014 and 2015, more than 100,000 farmers suffered losses from another

drought and the onset of El Niño.11 In 2018, a new drought struck the country before it had

11https://reliefweb.int/report/el-salvador/el-salvador-drought-emergency-appeal-no-

mdrsv010-operations-update retrieved on August 4, 2020.
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recovered from the previous one. This led to a sharp loss of staple crops such as corn and to

the declaration of a “red alert” by the government.12 Droughts and rising temperatures are

driving incomes down while pushing food insecurity and migration up. The outlook is grim

as agricultural production may become infeasible in some areas (WB, 2018). For example, in

the Dry Corridor (a region with severe water shortages, rising temperatures, and persistent

droughts), one-third of households are food insecure. Drought shocks and lack of food are

the main motivations for migration from this area (WFP, 2017).

Recurring droughts and extreme temperatures are causing large crop losses (particu-

larly coffee, corn, and beans) and taking a heavy toll on vulnerable rural populations.13 As

noted above, most agricultural producers there are small family farms with average land

sizes of 1.2 hectares14 that are dedicated to subsistence farming. Since only 1.4 percent of

the land is irrigated,15 agricultural production depends largely on the rain cycle (WB, 2018).

This is particularly worrying as the Dry Corridor is characterized by high unemployment,

limited and seasonal labor demands and low and irregularly paid wages (WFP, 2017), mean-

ing that there is little scope for adjustment in the labor markets following the economic

distress caused by weather shocks in the agricultural sector.

Figure 1 illustrates the trend in increasing temperature levels. In our empirical model,

the main variable of interest is temperature, but all our specifications control for precip-

itation. We chose temperature as our main variable of interest because it is a stronger

predictor of crop yields than rainfall (Lobell and Burke, 2008; Burke and Emerick, 2016;

Ortiz-Bobea et al., 2019; Ortiz-Bobea et al., 2021; Colmer, 2021). Extreme temperatures

are more difficult to manage than low rainfall because the latter is storable and can be re-

12https://www.reuters.com/article/us-el-salvador-drought/el-salvador-declares-

emergency-to-ensure-food-supply-in-severe-drought-idUSKBN1KE338 retrieved on August 4,
2020.

13http://www.fao.org/americas/noticias/ver/en/c/1150344/ and https://www.nytimes.com/

interactive/2020/07/23/magazine/climate-migration.html retrieved July 31, 2020.
14According to FAO, 87 percent of agricultural producers are small family farms. http://www.fao.org/

world-agriculture-watch/our-program/slv/en/ retrieved July 31, 2020.
15https://data.worldbank.org/indicator/AG.LND.IRIG.AG.ZS retrieved July 31, 2020.
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placed by groundwater resources (Colmer, 2021); average temperature has increased over

the years while rainfall is more erratic (Ortiz-Bobea et al., 2021); and rainfall is more likely

to have greater measurement error than temperature (Burke and Emerick, 2016). In fact,

recent studies find that temperature has a stronger effect on staple crops than precipitation

does (Schlenker and Lobell, 2010; Nawrotzki, 2015; Carleton and Hsiang, 2016; Jessoe et al.,

2016; Aragón et al., 2021).

2.2 Migration from El Salvador to the United States

The inflow of Salvadorean migrants to the United States started in the 1980s due to the civil

war and has continued ever since. Migrant networks have supported newly arrived families

with financial assistance, shelter, and connections to labor markets. This aid has helped

to attract new waves of migrants (Donato and Sisk, 2015; Clemens, 2021).16 By 2017, 2.3

million Hispanics of Salvadorean origin lived in the United States—the third-largest group

of Hispanic-origin immigrants in the country.17

The costs of migration from Central America to the United States have risen signifi-

cantly in the past decade. In the last 15 years, the U.S. government has imposed stricter

regulations and enforced tighter border controls, which have produced more detentions and

deportations (East and Velásquez, 2020). These policies have particularly affected immi-

grants from El Salvador. In 2018, nearly 32,000 Salvadoreans were apprehended at the

border, compared with over 14,000 apprehensions in 2007.18 As might be expected, the price

of services provided by migrant smugglers (coyotes) has also risen sharply. Surprisingly, this

increase has not effectively deterred migration (Massey et al., 2014). Figure 2 depicts the ris-

ing costs of migrant smugglers and apprehensions at the border, illustrating that suppressive

measures have not succeeded.19

16Clemens (2021) finds that past migration flows explain one-third of the current flows caused by violence.
17https://www.pewresearch.org/hispanic/fact-sheet/u-s-hispanics-facts-on-salvadoran-

origin-latinos/ retrieved on July 30, 2020.
18https://www.cbp.gov/newsroom/media-resources/stats/retrievedonJuly31,2020.
19This article provides an example of the decision to migrate in spite of high migration costs: https:
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So what causes these persistent flows? Evidence indicates that push factors such as

deteriorating economic conditions, negative income shocks, and violence are important de-

terminants of the migration decision (Stanley, 1987; Halliday, 2006; Yang, 2008; Clemens,

2021). Extreme weather conditions are strongly related to internal migration in Central

American countries and are also potentially a cause of international migration (Baez et al.,

2017; WFP, 2017; WB, 2018; Bermeo and Leblang, 2021). El Salvador is not only extremely

vulnerable to changing climate conditions but it has also sustained more frequent weather

shocks in recent years (ECLAC, 2010).20 Interestingly, newly arrived Salvadorean migrants

in the United States increasingly come from rural areas, which are more vulnerable to such

shocks (WFP, 2017; Abuelafia et al., 2020). Figure 3 shows a strong correlation between

apprehensions of Salvadoreans at the U.S. border and temperature shocks in El Salvador the

prior year, measured as two SD above the historic mean.

3 Data

3.1 Agricultural Production

Our empirical analysis uses several data sources. Data on agricultural production come from

the Multiple Purpose National Agricultural Survey (ENAMP) collected by the Ministry of

Agriculture for 2013–2018. The ENAMP is a yearly cross-sectional survey of agricultural

producers that collects information on crop yield, land size, agricultural inputs (including

labor), and self-reported prices. The sample includes 19,261 agricultural producers and is

representative at the national level. For grain crops, it is representative at the provincial

level. The survey is administered during the last quarter of the year once the harvest has

occurred for the first two seasons, primera (the main harvest season) and postrera. (See

Figure A1 in the Appendix for a timeline of the different data sources). At that time,

//www.nytimes.com/interactive/2020/07/23/magazine/climate-migration.html.
20https://www.ifad.org/en/web/operations/country/id/el_salvador retrieved on July 31, 2020.
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respondents are asked to predict the third harvest of the year, apante.

We focus on corn production. As noted above, corn is the main staple crop in El

Salvador as well as in the rest of Central America (Figure A2 in the Appendix). It is

a primary source of caloric intake for rural households and its production is widespread

(Nawrotzki, 2015; WB, 2018). In fact, between 83 percent and 90.3 percent of the sample

observations produce corn.21 It is a short-cycle crop for which temperature shock impacts

can be traced back in the same period.22 In addition, other papers have found a significant

association between temperature shocks and corn production.23

The corn production calendar is as follows: primera, the main harvest season (June

and July), postrera (August and September), and apante (November and December). Figure

A3 in the Appendix illustrates the yearly contributions of the three harvest seasons for

our period of analysis. Corn production occurs mostly in the main harvest season, so our

estimates measure the effect of temperature shocks during primera. In addition, we perform

robustness tests using the other seasons (postrera and apante) and the lean season, when we

would expect a weak effect or no effect of extreme weather on production.

The agricultural production outcomes include: (i) output variables: total yield, land

productivity (measured as yield per total land plot size and yield per land cultivated in corn),

Total Factor Productivity (TFP), estimated as the residual of regressing the agricultural

output on all the inputs listed below in (ii), and labor productivity (measured as yield

per worker); and (ii) input variables: the number of workers (total, hired, and household),

a principal component index of other inputs (planting material, agrochemicals, chemical

agents, and agroecological elements), and land size (size of land plot and land allocated to

21An average agricultural producer has a yield per hectare of 2.3 tons (SVC$ 709.8) and a land plot of 1.5
hectares, of which 0.5 hectares are cultivated with corn. (See Tables A1 and A2 in the Appendix).

22Access to irrigation—crucial for managing periods of drought and extreme temperatures—is practically
nonexistent (0.4 percent). (Tables A1 and A2).

23See Deschênes and Greenstone (2007), Schlenker and Roberts (2009), Schlenker and Lobell (2010), Feng
et al. (2010), Roberts and Schlenker (2011), Ortiz-Bobea et al. (2019), and Burke and Emerick (2016). Most
of these papers study the effects of weather shocks on crop-yield use data for developed countries that also
produce corn.
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corn).

3.2 Labor Markets and Migration

To study labor outcomes and migration, we use the Multiple Purpose Household Survey

(EHPM), a yearly cross-sectional survey collected by El Salvador’s official statistics agency

that includes information on household members’ sociodemographic characteristics, housing,

employment, agricultural outcomes, land tenure, household income, and migration status,

among other elements. The sample in the estimations covers 186,910 households for 2009–

2018. The survey is representative at the national level and for 50 municipalities.24

Labor outcomes are constructed based on the labor module of the survey for the

working-age population aged 10–65 years. Labor outcomes include employment, hourly

wages, weekly hours, and monthly wages.25 The module also enables us to identify an occu-

pational sector for each working member of the household.

Migration outcomes are identified using the migration module, which collects informa-

tion on household members who live abroad, their year of migration, and their destination

country.26 Our outcome variable is a dummy equal to one when at least one household mem-

ber migrated abroad one year prior to the survey.27 Therefore, this analysis is conducted at

the household level. We group the households as follows: (i) agricultural households; (ii) agri-

cultural households that grow seasonal crops;28 (ii) agricultural households that grow corn;

(iii) non-agricultural households; and (iv) unemployed households. We define the household

sector based on the main occupation of the household head and working-age members. This

definition, however, may be endogenous so we test the robustness of our results by defining

24We dropped three households with no information on the occupation of the household head.
25Variables in Salvadorean Colons (SVC$) are deflated using the deflator of Banco Central de Reserva de

El Salvador in https://www.bcr.gob.sv/bcrsite/?cdr=123.
26In our period of interest, between 93 percent and 95 percent of household members living abroad resided

in the United States.
27We identify recent migration but we cannot identify whether it is permanent or temporary.
28Seasonal crops must be replanted after each harvest. Corn is the most important seasonal crop in El

Salvador.
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a household as agricultural using alternative methods. We discuss these results in section

5.7.

Ideally, we would measure migration using data on migrants rather than households

with migrants. The latter may underestimate the number of migrants as, in some cases, all

household members may migrate together, especially following intense temperature shocks.

On the other hand, data collected in the United States regarding Salvadorean migrants may

underreport undocumented ones (Halliday, 2006). To evaluate potential underreporting of

entire-household migration, we compare migration trends from the EHPM and the American

Community Survey (ACS).29 Using the ACS, we calculate the percentage of households in

the United States with at least one or all members who migrated from El Salvador the

previous year. Figure 4 shows similar trends for both surveys for most years except for 2015.

That year, the percentage of entire-household migration reported in the ACS spiked while

in the EHPM, households reporting migrant members fell sharply. This suggests 2015 might

have been a year when international migration was more common for entire Salvadorean

households than for individuals. Reassuringly, our results are robust with and without the

2015 data.

Tables A1 and A2 report descriptive statistics of the outcome and control variables,

respectively. Almost 0.9 percent of households had at least one member who migrated

abroad the year before the survey; 17.2 percent of household heads were employed in the

agricultural sector; of those, 6.7 percent owned land; and only 3.3 percent of households had

an agricultural credit.

3.3 Temperature

Temperature data come from NASA’s Moderate Resolution Imaging Spectroradiometer

(MODIS) Land Surface Temperature, a data grid of one km resolution that features eight-

29The ACS is a repeated cross-sectional dataset that covers a one percent random sample of the US
population (Ruggles et al., 2017).
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day temperature averages for 2001–2018.30 We aggregate the grid to the municipal level with

a weighted mean using the area covered.

Temperature shocks measure the number of weeks during the main harvest season in

which the temperature was 2 SD above its historic mean during that same week.31 To create

our temperature shock we follow the following steps: first, we estimate historic means and

standard deviations for temperature for the main harvest period between 2001 and 2006.

Second, we standardize the temperature of municipality j, during week w of year y using the

historic mean µj,w,2001−06 and standard deviation σj,w,2001−06 of municipality j, during week

w, between 2001 and 2006 (McKee et al., 1993; Marchiori et al., 2012):32

Temperaturej,w,y − µj,w,2001−2006

σj,w,2001−2006

where Temperaturej,w,y is the temperature of municipality j and time w (week) during the

main harvest season of year y. Third, we define a temperature shock as being 2 SD above

the mean.33

Temperature shockj,w,y = 1

[
Temperaturej,w,y − µj,w,2001−2006

σj,w,2001−2006

>= 2

]

Our main dependent variable is the number of weeks with a temperature shock during the

main harvest season (8 weeks from July to August).34 In section 5.7 we show our main

results using alternative definitions and thresholds for the temperature shock, for example:

30Alternative sources to measure temperature are the daily MODIS and the ERA5. The MODIS at the
weekly level is our preferred dataset for two main reasons: first, it is the dataset with the most disaggregated
information (one km x one km grids). Second, it has temperature information for all the years and all the
municipalities in our Household and Agricultural Surveys. In contrast, the MODIS data available on a daily
basis contains missing values due to cloud coverage on each specific day, whereas ERA5 compiles information
on a 30 km grid.

31For easier interpretation we will refer to a week to the eight-day period.
32This is similar to the method implemented by McKee et al. (1993) to estimate SPI (standardized pre-

cipitation index) and the definition of weather anomaly by Marchiori et al. (2012).
33McKee et al. (1993) uses this method to classify extreme droughts using the SPI.
34This measurement matches the frequency indicator employed in Dallmann and Millock (2017).
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harmful degree weeks, number of weeks with temperatures above 29 and 35 degrees Celsius,

and thresholds of 1 SD and 1.5 SD to define the shock.

Using our main definition of a temperature shock, on average, there were 1.13 weeks

out of 8 weeks during the main harvest season of the year with temperatures 2 SD above

the historic mean. During 2014 and 2015 (the years with the biggest temperature spikes),

the number of weeks with excessive temperatures was 1.9 and 4.1, respectively. Moreover,

temperature shocks varied widely across municipalities: in 2015, some southeastern munic-

ipalities experienced five weeks of such shocks, whereas in the northwestern region, some

municipalities had none (Figure 5). The standard deviation of the temperature shock from

2009-2018, is 0.58. When interpreting the results, we will also interpret the effect corre-

sponding to a 1 SD increase in the frequency of the temperature shock.

3.4 Controls

We control for numerous baseline and time-variant characteristics at the municipality level.

Time-variant characteristics are measured in t− 1 to avoid adding bad controls and include:

rainfall shocks during the main harvest season (measured as the number of weeks with

rainfall 2 SD above the historic mean), drought shocks (measured as the number of weeks

with rainfall 2 SD below the historic mean),35 soil moisture, and crime shocks.36

To control for baseline municipality conditions, we interact baseline characteristics with

a linear time trend. We use the following variables from the 2005 Poverty Map of El Salvador:

poverty and extreme poverty rates, income per capita, percentage of households with no ac-

cess to drinking water, percentage of people employed in agriculture, and percentage of young

35Precipitation data were extracted from the Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), with a resolution of 0.25 degree
with monthly periodicity and available from 2003. Historic and standard deviation means are estimated for
2003–2006.

36To calculate these shocks, we use yearly data on homicides from the Policia Nacional Civil. We calculate
the historic mean and standard deviation for homicides per capita 2003–2006 and define crime shocks as the
number of weeks during the year in which homicides were 2 SD above the historic mean.
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adults (16 and 18 years of age) who are not enrolled in school.37 Using data from the 2007

census, we estimate the percentage of the population below 19 years of age, the percentage

of the population above 60 years of age, population density, the number of internal migrants

and emigrants, and the percentage of households with members living abroad. Lastly, we

also include linear time trends interacted with the municipality’s elevation calculated at the

grid level and averaged for the municipality.38

4 Empirical Strategy

To measure the effect of temperature shocks on agricultural production plus responses

through labor demand and migration, our identification strategy exploits temporal and

geographic variations in temperature between 2009 and 2018. We hypothesize that the

temperature shocks El Salvador has experienced in the last decade have damaged economic

outcomes, and that households have responded to these shocks by adjusting production costs

and migrating. These responses might depend on landownership and access to both formal

and informal risk-management mechanisms.

4.1 Agricultural Production

We start by estimating the effect of extreme temperatures on agricultural production.39 Pre-

vious research has shown a strong correlation between temperature shocks and agricultural

production, particularly in countries with rain-fed agriculture and limited access to risk-

management mechanisms. For example, Munshi (2003) finds a strong correlation between

rainfall and the probability of migration to the United States among individuals who live in

agricultural regions in Mexico, while Feng et al. (2010) establish a significant relationship

37http://www.fisdl.gob.sv/temas-543/mapa-de-pobreza, retrieved in July 2019.
38Extracted from ASTER Global Digital Elevation Model NetCDF V003. NASA EOSDIS.
39Dell et al. (2012) and Carleton and Hsiang (2016) provide an extensive literature review that describes

the effects of temperature on agricultural outcomes, mortality, physical and cognitive capacities, and crime,
among others.
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between climate-driven changes in crop production and net out-migration.

To estimate the effect of temperature shocks on agricultural production and assess the

adjustments producers make to mitigate these impacts, we use data from the ENAMP for

2013–2018. Specifically, we estimate the effect of temperature shocks on agricultural out-

comes for corn and other seasonal crops. We estimate the following regression model:

log(yijt) = α + δ1Tijt + δ2

k=t−1∑
k=t−4

Tijk +X ′ijtγ+

βZjt + µj + φt +W ′
j2005 ∗ t+ εijt

(1)

Since we want to estimate the contemporaneous effect of a temperature shock on agri-

cultural outcomes, Tijt represents the temperature shock in the same year of production

during the main harvest season,40 measured as the number of weeks with temperatures 2

SD above the historic mean. We test the robustness of temperature shocks using alternative

definitions in section 5.7. In order to identify the contemporaneous short-term effect of high

temperatures, and to assure that δ̂1 is not capturing the effect of temperature shocks from

previous seasons, we include
∑k=t−1

k=t−4 Tijk; that is, the total number of weeks with extreme

temperatures during the main harvest season of the previous four years.

Recall that the agricultural survey collects information during the last quarter of the

year. Therefore, a household interviewed during the survey year t reports its production

for the last harvest season in year t. In our model, yijt represents different variables: total

production, yield per hectare for size of land plot and land dedicated to corn production, the

value of yield per hectare, TFP, number of workers (total, hired, and household), and other

agricultural inputs for producer i in municipality j in year t during the agricultural harvest

season.

Our main specification controls for time-variant household characteristics (X ′ijt) such

40For corn, this is the period between June and July, which is ostensibly the rainy season.
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as household head’s education, number of household members, and access to irrigation for

corn. However, since these could be endogenous, we test the robustness of the results without

these controls. We also include a vector with time-variant controls at the municipality level

(Z ′jt−1). To avoid including potentially bad controls in our specification, these variables are

measured in t − 1. Given that temperature might be highly correlated with other climatic

variables, this vector includes rainfall shocks and droughts (Auffhammer, 2018).41 In addition

to natural disasters and extreme weather events, high levels of violence have historically been

an additional push factor behind migration from El Salvador (Stanley, 1987; Halliday, 2006;

Yang, 2008; Clemens, 2021), and recent evidence shows weather shocks may intensify violence

(Dell et al., 2014; Carleton and Hsiang, 2016). To control for this, we add a variable of a crime

shock measured in t−1 and defined as the number of weeks with crime levels 2 SD above the

historic mean. We include fixed effects (µj) that account for any time-invariant unobserved

heterogeneity at the municipality level. Importantly, this includes the historic level of rainfall

and historic mean of temperatures in municipality j. Our specification also includes year

fixed effects (φt) to account for national shocks that would impact migration decisions, such

as shocks that could affect prices. Finally, we include interactions between socioeconomic

variables measured at baseline (2005 and 2007) and linear time trends (W ′
j2005) that control

for any pre-trend at the municipality level that could bias the results.42 Our model’s validity

relies on the assumption that, conditional on the previous controls, there were not unobserved

time-varying differences within municipalities correlated with temperature shocks. All the

models are estimated using double-clustered standard errors by municipality and year, and

the results are robust to using Conley standard errors to account for spatial correlation.

41The results are also robust to controlling for level of soil moisture. Ortiz-Bobea et al. (2019) show
evidence of the importance of accounting for soil moisture when explaining historic yields. However, their
models also find that temperature is the primary weather-related driver of future yields. Following these
results, our preferred specification does not add moisture as a control.

42The vector W ′j2005 includes measures of poverty, average income per capita, access to drinking water,
demographic structure of the population (percentage of the population below 19 years of age and above 60
years), the number of internal migrants and emigrants, school dropout for young adults (16 and 18 years
old), percentage of people employed in agriculture, population density, and elevation.
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As additional robustness checks, we estimate a placebo test with the temperature

shock defined as the number of weeks above the historic mean during the entire year or the

lean season, instead of the number of weeks with a shock only during the main season. In

analyzing the effect of the temperature shock outside the main season, we find no significant

effects on agricultural production. This rules out that contemporaneous unobserved events

are responsible for the negative effects on production.

4.2 Responses to Temperature Shocks

4.2.1 Labor Markets

We continue our analysis by exploring how farmers adjust their input use in response to

the temperature shock. Two important features influence these adjustments. First, when

the temperature shock occurs, most inputs are fixed as decisions have already been taken.

Hence, the margin of adjustment is limited. Second, agricultural producers with restricted

or no access to financial markets use other strategies to offset income losses and smooth

consumption. One strategy is to lay off hired workers and substitute household workers for

them, thus protecting the agricultural producer’s household income. The negative impact of

the temperature shock may thus transmit to labor markets, affecting workers in the agricul-

tural and non-agricultural sectors (Jayachandran, 2006; Colmer, 2021). The contraction in

the labor demand of agricultural producers will pressure agricultural wages and push workers

to increase working hours or seek employment in the non-agricultural sector.

We estimate the relationship between temperature shocks and labor markets using the

EHPM data following the model below:43

43For the EHPM, we have information from 2009–2018 but the earliest year in the ENAMP is 2013. We
estimate the migration model for 2013–2018 and the results are robust for this sample.
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lijt = α + δ1Tijt + δ2

k=t−1∑
k=t−4

Tijk +X ′ijtγ + βZjt−1 + µj + φt +W ′
j2005 ∗ t+ εijt. (2)

where lijt represents the labor outcomes of individual i living in municipality j in year t,

using the same controls as in equation (1). Labor outcomes include whether the person

is employed, hourly wage, weekly hours worked, and monthly salary. We estimate these

effects for individuals working in the agricultural and non-agricultural sectors. However,

the occupation of workers might be endogenous. To overcome these challenges, we also

estimate effects on labor market outcomes at the municipality level such as occupation-

specific employment shares and average hourly wages.

4.2.2 International Migration

Finally, we estimate the effects of temperature shocks in t− 1 on the probability of interna-

tional migration in time t, using data from the EHPM household survey with the following

regression model:

mijt = α + δ1Tjt−1 + δ2

k=t−2∑
k=t−5

Tijk +X ′ijtγ + βZjt−1 + µj + φt +W ′
j2005 ∗ t+ εijt (3)

where mijt is a dummy variable equal to one if a member of household i living in municipality

j in year t migrated from El Salvador in year t, and equal to zero otherwise.44 The variable

Tjt−1 and the controls are the same as those in equations (1) and (2). It is important

to highlight that in this specification the temperature shock is lagged one period because

migration is costly and the decision to migrate might not be immediate.

44In the empirical regressions, we multiply the dummy variable by 100 to ease the interpretation.
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5 Results

5.1 Agricultural Production

We start by estimating the effect of temperature shocks on agricultural output and different

productivity measures. Because corn cannot absorb additional heat above certain thresholds,

we expect to find a negative effect of extreme temperature shocks on corn production (Jessoe

et al., 2016). Recall that we follow the agricultural calendar and control for temperature

and rainfall shocks during the main harvest season.

Table 1 reports the results of estimating equation (1) with the full set of controls, using

data from the ENAMP for 2013-2018. In Table A3, we add controls across columns to test

the robustness of the model. Reassuringly, the results are robust to adding the full set of

controls. The dependent variables are: the logarithm of total corn production (panel A), the

logarithm of corn yield per hectare calculated with the total land plot size (panel B), the

logarithm of corn yield per hectare calculated with total land cultivated in corn (panel C),

the logarithm of the TFP (panel D), and labor productivity (panel E). Column (1) shows the

effect of the contemporaneous temperature shock without controlling for temperature shocks

in previous years, and column (2) adds those controls. Both the magnitude of the coefficients

and their significance do not change across specifications, which is consistent with the fact

that our identification strategy captures within-season, short-term temperature effects.

The results show consistently negative effects of the temperature shock on all outcomes

other than labor productivity. Focusing on column (2), we find that one temperature shock

during the main harvest season decreases total corn production by 3.2 percent, and one

standard deviation (SD) increase in the frequency of extreme temperature shock during

the main harvest season of the contemporaneous year reduces total corn production by 1.9

percent (panel A).45 Land productivity falls between 3.4 percent (panel B) and 2.9 percent

450.032*(standard deviation of the temperature shock)=0.032*0.583.
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(panel C), and TFP drops by 2.3 percent (panel D) for an additional SD increase in the

temperature shock. The sharper decline in land productivity suggests agricultural workers

increase their land use in the short term, which accords with results from Aragón et al.

(2021) in Peru.46 Panel E shows no impact on labor productivity: not only is the coefficient

estimate statistically insignificant but the magnitude is also not economically meaningful,

which suggests a drop in demand for agricultural workers. All results are robust to using

Conley standard errors to account for spatial correlation (Table A4).

Overall, we find robust evidence that extreme temperatures have hurt corn production

in El Salvador. Some of these results imply farmers respond by adjusting the intensive use

of inputs such as land and workers. We investigate this in the next section.

5.2 Input Adjustments

We now examine how agricultural producers adjust in the short-run the use of production

inputs. Since we measure responses in the short-term, the margin of adjustment is limited.

We expect to see responses through the use of inputs such as land and fertilizer which can

be adjusted if the planting season is not over. Landowners may also respond by reducing

their labor demand by hiring fewer agricultural workers and substituting them by house-

hold workers (Jayachandran, 2006; Bastos et al., 2013; Jessoe et al., 2016; Aragón et al.,

2021).

Table 2 reports these estimates. We construct a principal component index of four types

of inputs and estimate the impact for the index and each group separately. The temperature

shock has a negative impact on the principal component index, which is mainly driven by

chemical agents that are mostly used for post-harvest activities. The effect on the other three

46Although the inclusion of the cumulative shocks in previous years does not influence the significance and
magnitude of the contemporaneous shock, it is interesting to find a significant effect of the previous shocks
on land productivity (panel B). Aragón et al. (2021) explain that if the increase in land use comes at the
expense of planting fallow land, this response could have persistent effects in the medium term and long
term. While we do not test the effect on the use of fallow land directly, our results are consistent with their
hypothesis.

24



types of inputs is not statistically significant and the magnitude of the coefficient is small.

Consistent with the findings in Table 1, the results in column (7) show that corn producers

increase the land allocated to corn production by one percent when the temperature shock

increases by one SD. Together, the results point to a negative impact on corn production

and an adjustment at the intensive margin on the use of inputs that are not fixed. In

particular, the results in column (4) show a significant decrease in chemical agents, which

are more responsive to weather shocks because they are mostly used post-harvest.47 Since

our data is cross-sectional, we cannot identify adjustments at the extensive margin such as

the abandonment of agricultural production or land sales. Therefore, we identify a lower

bound on the impact of temperature shocks on corn production.

5.3 Labor Adjustments

We next study how agricultural producers adjust their labor demand when facing a temper-

ature shock. Table 3 reports results from estimating equation (2) for the number of workers

allocated to agricultural production, using data from the ENAMP. Since some households

only have either household or hired workers, we have households with zeros in one of these

categories. To avoid dropping zeros, we use the hyperbolic sine transformation. Column (1)

shows the effect on the total number of workers, column (2) on non-household workers, and

column (3) on household workers. We report only the results of our preferred specification

but they are robust when gradually including the different controls.

The temperature shock decreases the total number of workers, which is driven by

non-household workers. One additional week with a temperature shock during the main

season reduces the demand for the total number of workers, with a reduction in the inverse-

hyperbolic sine of 0.018. In other words, one additional SD in the frequency of extreme

temperature shocks reduces the demand for the total number of workers in terms of inverse

47Similarly to our paper, Jagnani et al. (2020) estimate the effect of within-season temperature variation
on agricultural inputs for corn production in Kenya. They find an increase in the use of pesticides and a
reduction in the use of fertilizers.
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hyperbolic sine by 0.010 and non-household workers by 0.017. The coefficient estimate for

household workers is positive—which is expected since agricultural producers may substitute

household workers for hired workers—but it is not statistically significant. At face value, the

results suggest a substitution of household workers for non-household workers. These results,

with the effects on agricultural production, imply that income is negatively affected and

households adjust to the shock by reducing their demand for non-household workers.

To provide a comprehensive picture of the effect on labor outcomes, we estimate the

effect of the temperature shock on individual probabilities of employment using data from

the EHPM household survey (panel A, columns (1)–(2), Table 4). The results suggest there

is a negative effect on the probability of being employed, but the results are imprecise. In

the short term we expect the effects to be driven by individuals working in the agricultural

sector, particularly those growing crops that are the most vulnerable to temperature shocks,

such as corn. We explore this hypothesis in columns (3) to (8). As expected, the results

are negative and significant for agricultural producers of seasonal crops and corn, which is

consistent with the effects estimated in Table 3. Columns (5) and (6) show a significant

and negative effect on the probability of employment in the agricultural sector, which is

driven by workers growing corn (columns (7) and (8)). The results in column (8) show that

an increase in the temperature shock by 1 SD decreases the likelihood of being employed

in the agricultural sector growing corn by 1.3 percent relative to the mean. The results in

columns (9) and (10) show positive but non-statistically significant effects on the probability

of working in the non-agricultural sector, which suggests no substitution towards employment

in the non-agricultural sector.

We complement this analysis by estimating the effect of temperature shocks on em-

ployment rates at the municipality level. We show these results in Table A5. We estimate

equation (2) on employment rates in the agricultural sector and the non-agricultural sector,

as well as on the unemployment rate at the municipality level using data from the EHPM for
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2009-2018.48 The results in column 2 of Panel A shows that 1 SD increase in the frequency

of extreme temperature shocks reduces the employment rate in the agricultural sector by

1.16 percent relative to the baseline mean, and the effect is larger for agricultural workers

who produce corn (1.99 percent). Consistent with the estimations at the individual level,

and contrary to findings in other settings, there is no evidence of reallocation to the non-

agricultural sector (Colmer, 2021). Instead, the results suggest the drop in the agricultural

employment rate is accompanied by an increase in the unemployment rate.49 These results

are in line with Mueller et al. (2020) which finds that migration due to weather shocks is

inversely related to the demand for workers.

Given that labor is negatively affected at the extensive margin, especially by non-

household workers, we proceed to explore if there are any compensations done at the intensive

margin. At first glance, there is no overall effect on the number of hours of workers in

agriculture or outside of agriculture. Panel A of Table 5 shows the effects of estimating

equation 2 on the logarithm of working hours at the individual level, conditional on being

active in the labor force. However, when exploring these effects by sex and age, we find that

the average effects in Table 5 mask important heterogeneity. Panel A in Tables A6 and A7

show a positive and significant effect on the working hours of women and children younger

than 14 years. These findings suggest that if there is a substitution between non-household

workers and household workers, women and young children are likely to be the household

members who replace the hired labor. This could be a costly response to these shocks with

potential long-term consequences for the human capital accumulation of young children. It

is important to take into account, however, that these results should be interpreted with

caution since the effects are measured for workers in the labor force, and thus might suffer

from sample selection.

48Employment Rate in Sector j and municipality m=
#Workersjm

WorkingAgePopm
49We estimate the effects in the non-agricultural sector by sector, and the null results persist for all the

sectors. Results are available upon request.
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Finally, we estimate the effect of the temperature shock on wages. Theoretically, we

expect the effect on wages to depend on the margin of adjustment of landowners. Since

landowners demand and supply labor simultaneously, the total effect of the weather shock

on agricultural income will depend on their capacity to reduce labor costs by substituting

household workers for hired workers. Labor markets, through a reduction in wages, may

provide an insurance mechanism to landowners in regions with incomplete financial markets

(Jayachandran, 2006). According to Jayachandran (2006), the effect on wages depends on

the availability of risk-management mechanisms. Without access to financial markets or the

ability to save or borrow, wage effects may intensify.

Panel B of Table 5 shows the effects of the temperature shock on individual hourly

wages, conditional on being active in the labor force.50 The results in panel B show no

significant effect on contemporaneous wages. The null effects in contemporaneous wages

are also found when estimating the effects at the municipality level (Table A5). When

disaggregating the effects by sex and age, we find evidence of a positive wage effect for

women and young children (Panel B Tables A6 and A7). The absence of any wage impact

among males suggests that the rise in unemployment might be countered by a reduction in

the availability of labor, potentially due to out-migration plans. Migration may ease the

pressure on labor markets and render the effect on labor outcomes smaller or nonexistent.

Additionally, the lack of a significant effect on wages on average may mask heterogeneity in

access to risk-management mechanisms or stickiness in wages in the short term. Agricultural

wages might be more volatile in communities with incomplete financial markets and low or

no migration (Jayachandran, 2006). We investigate these hypotheses in section 5.5.

Overall, the findings in this section suggest that declines in corn production are felt

in agricultural labor markets. Corn producers reduce their demand for hired workers and

use household workers instead. Laid-off agricultural workers can potentially switch to other

50As the results for working hours the sample of individuals in the labor force might be selected and we
should interpret this results with this caveat in mind.
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agricultural activities or to the non-agricultural sector, but we find no evidence of this in

El Salvador. Transmission of temperature shocks into labor markets might be the conse-

quence of incomplete financial markets to manage risk and low levels of integration between

local labor markets. We provide suggestive evidence about these mechanisms in the next

section.

5.4 International Migration

Without access to risk-management mechanisms or a non-agricultural sector that can absorb

displaced workers, international migration could become a key response to the income loss

caused by temperature shocks. We explore this hypothesis by estimating equation (3). Re-

sults with the fully controlled models are shown in Table 6.51 We estimate this model using

household-level information from 2009–2018 EHPM for all households (panel A), all agricul-

tural households (panel B), agricultural households that cultivate seasonal crops including

corn (panel C), agricultural households that cultivate corn (panel D), and non-agricultural

households (panel E). We categorize households based on the occupation of the household

head and the occupation of working-age members. A household is considered agricultural if

the household head and at least 50 percent of the working-age members work in this sector.

A potential concern is that the occupation of household members might be endogenous. In

Appendix Table A9, we classify households based on alternative specifications. Method (1)

is our preferred specification; method (2) only considers the occupation of the household

head, and methods (3) and (4) only consider other working-age members as a criterion to

classify them in each panel. The results on the probability of migration are robust overall

to the different classifications.

A negative effect on agricultural production is one mechanism through which high

temperatures can affect migration decisions. If this is the main mechanism in El Salvador,

51In Table A8, we test the robustness of our results by including one set of controls at a time. Overall, the
results are robust to the inclusion of all controls. Our preferred specification is the fully controlled model.
It is also important to recall that our fully controlled model includes rainfall shocks.
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we would expect to see a larger response to these shocks among agricultural households,

especially corn producers. The results in Table 6 show significant effects of the temperature

shock on the probability of migration only for agricultural households working on seasonal

crops, particularly corn (panel D). Not only are the effects statistically significant for this

sample, but the magnitude of the coefficient is almost 10 times larger than that for all

households. The coefficient for non-agricultural households is not significant and small in

magnitude.

The results in our preferred specification with the full set of controls for agricultural

households that grow corn (column (2), panel D) show that one additional week with a

temperature shock increases the probability of international migration by 0.27 percentage

points (pp). Recall that the dependent variable has been multiplied by 100. This means that

one additional SD of frequency of temperature shock increases international migration by

20.2 percent relative to the mean of international migration in El Salvador.52 Although, at

face value the magnitude of these effects seems large, it is challenging to directly compared it

to other settings given that the effect of temperature shocks on migration is highly dependent

on local labor markets (Mueller et al., 2020). Mueller’s study indicates that a 1 SD increase

in precipitation caused a decline in migration of 10-11% in Kenya and Botswana while

causing an increase in migration as large as 24% in Zambia. El Salvador’s limited labor

market capacity to accommodate unemployment within its small size is coherent with large

results on migration, which works as an alternative adaptive measure. Additionally, it is

important to remember that we cannot distinguish permanent from temporary migration.

Given the patterns of migration in El Salvador and the fact that we measure migration based

on the reports of households that stay there, it is reasonable to believe temporary migration

represents a substantial percentage of our results.53

52To calculate this: δ̂1∗temp(SD)
migration(mean) = 0.273∗0.583

0.788
53Around 66% of Salvadorian migrants in the US aim to stay permanently, according to a survey directed

to recent immigrants in the US (Abuelafia et al., 2019).

30



Although we do not have information on migrants, we explore the heterogenous effects

of migration based on household characteristics, particularly access to land. Landowners

and wage workers are likely to adjust differently to temperature shocks, and we provide

evidence to support this hypothesis. On the one hand, landowners face larger opportunity

costs of migration (relative to agricultural wage workers) and cope better with negative in-

come shocks due to their increased access to risk-management mechanisms such as credits

(Kleemans, 2015; Kubik and Maurel, 2016; Cattaneo and Peri, 2016; Mahajan and Yang,

2020). Both dimensions reduce the likelihood of responding to these shocks through migra-

tion (Jayachandran, 2006; Feng et al., 2010; Hornbeck, 2012; Kleemans, 2015; Jessoe et al.,

2016; Aragón et al., 2021). On the other hand, access to land makes it easier to finance the

up-front costs associated with international migration.

In our data, we divide individuals by: landowners, individuals who claim ownership

of the land on which they produce; land tenants, producers who claim to lease the land on

which they produce; other type of land tenure, producers who claim to have access to land

being settlers, part of a cooperative, sharecroppers or free occupants; and wage workers,

who claim not owning land. Table A10 shows the effect of the temperature shock on the

probability of migration for these different groups.

There are several takeaways from this table. First, when looking at the means of the

outcome for the different panels, landowners show the highest likelihood of international

migration. This suggests that in El Salvador access to land might help finance the cost of

migration. Second, when looking at the effect of the shock on the probability of migration

relative to the mean, landowners and land tenants (Panel B and C) show the smallest effects

(37% and 27% relative to the mean, and the effects are not-significantly different from zero)

relative to wage workers (Panel E shows a non-significant increase of 44.6% relative to the

mean) and to settlers and free occupants (Panel D) whose probability of migration increases

by 57% and the effect is significantly different from zero. This might be a group of agricultural
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producers who is more vulnerable than landowners because they do not have property rights

over the land they use, and more vulnerable to wage workers, because they do not receive a

wage.

5.5 Heterogeneity by Access to Risk-Management Mechanisms

The transmission of temperature shocks into labor markets depends on the availability of

other risk-management mechanisms such as formal credits, informal transfers from family

and friends, and crop insurance (Jayachandran, 2006). Since the latter is practically nonex-

istent in El Salvador, we focus on access to financial markets as well as remittances, which in

El Salvador constitute 24 percent of GDP54 and play an important role in supporting family

members who stay in the country.55 In order to investigate both mechanisms, we construct

two different measures: (i) share of the population with access to credit in 2009, according

to the EHPM; (ii) share of the population with access to remittances in 2007, according to

population census.56 We then classify municipalities in the bottom and the top quartiles of

the distribution, in order to estimate the differential impact between agricultural farmers

living in municipalities in the bottom quartile versus those living in the top quartile. Em-

pirically we keep only these observations, and we fully interact the models in equations 1-3

with a dummy equal to one if a farmer lives in a municipality in the top quartile:57

54https://data.worldbank.org/indicator/BX.TRF.PWKR.DT.GD.ZS?locations=SV retrieved on Febru-
ary 14, 2021.

55Qualitative evidence describes how households in El Salvador depend on remittances from relatives in
the United States. See, for example: https://www.nytimes.com/2021/06/07/world/americas/kamala-

harris-guatemala.html?smid=url-share.
56By exploring the response to temperature shocks based on access to remittances, we contribute to a

growing literature on the effect of remittances in the countries of origin. See: Edwards and Ureta (2003);
Mishra (2007); Mobarak et al. (2021); Ambler et al. (2015); Hanson (2010).

57Instead of using only this sub-sample we estimated a model with the full sample, fully interacted with the
continuous variables measuring access to credit and remittances. The results are robust to those presented
in the paper.
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log(yijt) = α + Γij + δ1Tijt + δ2Tijt × Γij + δ3

k=t−1∑
k=t−4

Tijk + δ4
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k=t−4

Tijk × Γij+

X ′ijtγ +X ′ijtγ × Γij + β1Zjt + β1Zjt × Γij + µj + µj × Γij + φt + φt × Γij+

W ′
j2005 ∗ t+W ′

j2005 ∗ t× Γij + εijt

(4)

where Γij is the access to the risk coping mechanism: a dummy equal to one if a farmer lives

in a municipality in the top quartile on remittances or credit access.

We employ the municipal shares at baseline rather than individual outcomes to assuage

endogeneity concerns. Potential concerns still remain because municipalities with more or

less access to credit and remittances can be different in unobserved ways that are correlated

with the outcomes of interest. We add a rich set of municipality-level controls in addition

to municipality fixed effects. However, unobserved time-variant characteristics of the mu-

nicipality could relate both to the share of remittances or credit access at baseline and the

probability of migration. This relationship needs to be explored more rigorously, and our

results should be considered merely suggestive.

We estimate differential effects by access to risk-management mechanisms for agricul-

tural production, labor outcomes, and the likelihood of migration. Remittances and credits

may help households compensate for the negative income shock, thereby reducing their need

to use more costly mitigation mechanisms such as distress migration. At the same time, re-

mittances and credits may decrease migration costs by funding the relocation process, which

might increase the likelihood of migration. The effect of these variables on migration is an

empirical question we address in the following paragraphs.

Table 7 shows the fully interacted models with the share of households with credit

access in 2009 (column 1); and, the share of the population who received remittances in

2007 (column 2) for the agricultural outcomes measured in the ENAMP. Two main results
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come to light from these estimations.

First, the results in panels A and B suggest that access to risk-management mech-

anisms such as formal credits or remittances does not shield farmers from the effects of

temperature shocks. Farmers are probably not using these to protect themselves ex ante

through insurance. This is consistent with a review of the literature discussed in (Huckstep

and Clemens, 2023). These results also support the exogeneity assumption of our measure

of temperature shocks. In this context, it is important to investigate whether farmers decide

not to invest in weather-resistant seeds, appropriate fertilizer, and irrigation systems due to

liquidity constraints or lack of information.

Second, more access to remittances is associated with a lower response through a

reduction of non-household workers. The results show that the impact of temperature shocks

on labor markets is driven by municipalities with lower access to remittances. In these

municipalities, households need to resort more to labor markets to cope with the income

shocks and the effect of weather shocks thus transmits to labor markets. In contrast, in

municipalities with more access to remittances, labor demand for agricultural workers does

not respond as significantly to the temperature shock, arguably because these households

rely more on informal risk-management mechanisms. Importantly, although the sign of the

interaction is the same when looking at access to credit in column 1, the effects are never

significantly different from zero. This could be explained by the fact that only 3% of our

sample has received a formal credit.

Table 8 shows the same heterogeneity for the individual outcomes measures in the

EHPM. The effect of risk-management mechanisms on the decision to migrate is theoretically

ambiguous. On the one hand, access to risk-coping mechanisms, decreases the transmission of

the shock to the agricultural labor market, and decreases reliance on international migration.

On the other hand, access to risk-coping mechanisms finance migration costs, and it increases

the likelihood of international migration. The results in Panel D of Table 8 show no significant
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differential effect of the temperature shock on the decision to migrate by access to formal

credit or remittances. This could be explained by the two opposite effects that access to

remittances may have on migratory decisions.

Overall, the results in Tables 7 and 8 suggest that access to risk-management mecha-

nisms might reduce household reliance on decreasing labor demand to compensate for the

drop in income due to temperature shocks. Access to remittances may allow agricultural

producers to absorb these shocks without resorting to labor markets as a risk-management

strategy.

5.6 Integration to Other Markets

To study the heterogeneous effects through access to non-agricultural sectors, we use road

networks as a proxy for integration into other markets. Road network information was

provided by the Transport Division of the Infrastructure and Energy Sector (INE) of the

IADB, which uses data from Open Street Maps in 2022 58. We use the National road network,

which contains 95,410 roads in El Salvador comprising highways, avenues, and streets among

27 different road types.

Access to the non-agricultural sector may alleviate the negative effect on labor mar-

kets and reliance on international migration. We estimate the effects on labor markets and

migration, leveraging data on the national road network of El Salvador.59 We classify munici-

palities based on the distribution of the road network and present results for municipalities in

the lowest 25th percentile (the least connected municipalities) and in the top 25th percentile

(the most connected municipalities). We use the road network as a proxy for integration

58We do not anticipate significant changes in the road infrastructure of El Salvador between 2008 and
2022. The main road network expanded during the 90s and has been maintained since then by the national
road fund, FOVIAL (WB, 2006). Between 2000 y 2015, the construction of roads has been limited: 303 km
(2.4% of the total 12,493 KM) (Rendón et al., 2020)

59Road information was provided by the Transport Division of the Infrastructure and Energy Sector (INE)
of the IADB, which uses data from Open Street Maps in 2022. “National road network” includes all the
roads in El Salvador, while “main road network” only encompasses roads classified as primary or secondary,
which have the infrastructure to accommodate at least 500 vehicles per day, on average.
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to other markets. We hypothesize that a more integrated local labor market would facili-

tate reallocation into the non-agricultural sector, decreasing the effect of the shock on labor

outcomes and therefore on distressed migration.

The results support this hypothesis. The effects on the probability of working in the

agricultural sector is stronger for individuals living in the least integrated municipalities (bot-

tom quartile in the distribution of roads’ network) (Panel A, Table A11). As hypothesized,

we should then find a lower response through migration in the most connected municipalities.

The negative coefficient of the interaction in Panel D supports this hypothesis, but the effect

is noisily estimated. In this context, it is crucial to comprehend integration of local labor

markets and sectoral reallocation. These findings highlight the need for further research on

these subjects.

5.7 Robustness Checks

We estimate a number of robustness checks to test the validity of our identification strategy.

We perform several tests to see whether temperature shocks rather than a correlated effect

produce the negative effects on agricultural production, labor markets, and migration.

We first test our definition of the temperature shock. Tables 9 and A12 in the Appendix

show results for alternative definitions. First, in Table 9, we define the temperature shock in

different periods within the year as an alternative to the harvest season. Column (1) mimics

the main results—that is, it measures the temperature shock during the main harvest season.

In the next columns, we report the results for: (i) the number of weeks with the temperature

shock above the historic mean all year (column (2)); (ii) the apante season, which is the

last season and predicted in the survey (column (3)); and (iii) the lean season (column (4)).

As expected, we find significant effects only when using the shock defined during the main

harvest season.

Second, we test robustness using different periods. Recall that to calculate the prob-
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ability of migration, we use the EHPM household survey for 2009–2018. We estimate the

same regression: (i) for 2013–2018, the same period as the agricultural survey (column (5));

and (ii) excluding 2015, the year with the most intense drought (column (6)). The coefficient

estimates are robust to changing the periods and the results are consistently robust to all

specifications.60

We also test for robustness by measuring the temperature shock in four ways. Results

for all the main outcomes are in Table A12 in the Appendix. Columns (1) and (2) define

the shock as the number of weeks during winter with a temperature higher than 1 and 1.5

SD above the mean, respectively. Columns (3) and (4) define the temperature shock when

the temperature was above 29 and 35 degrees Celsius, respectively. Column (5) define the

temperature shock as Harmful Degree Weeks (HDW), where every 1-degree Celsius increase

in the average temperature above 32 degrees Celsius corresponds to a one-unit increase in

HDWs. Overall, the results are robust to these different measures.

We estimate a placebo test to measure the likelihood of obtaining estimates due to

chance. To do this, we randomly assign temperature levels to each municipality/week ob-

servation 1,000 times and reestimate the regression models using these alternative measures.

We plot the kernel density of the estimated δs from each of these iterations in Figure A4

for the probability of migration, and in Figure A5 for agricultural production. We plot our

baseline coefficients from Tables 1 and 6 in the red vertical lines. These analyses suggest the

estimated effects we find are very unlikely due to chance.

As an additional robustness test, we estimate the effect of the temperature shock on the

probability of migration for agricultural and non-agricultural households in rural and urban

places.61 Given the salience of violence in El Salvador, we explore whether the results are

robust to controlling for crime. Table A13 in the Appendix shows these results. The results

60For all results, it is important to note that Figure 4 suggests an underestimation of migration rates due
to the migration of entire households.

61A rural area in El Salvador is all the area in the municipality that is not covered by the population
center.
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are always robust to controlling for crime; as predicted, the probability of migration increases

with extreme temperatures only for agricultural households living in rural areas.

6 Conclusions

We study how rural households respond to an extreme rise in temperature. Based on house-

hold and agricultural producer data, we find that a sharp gain in temperature reduces agri-

cultural productivity and total production. Farmers adjust by cutting demand for hired

workers. Labor markets transmit the negative impact of weather shocks to agricultural

workers, who cannot transfer to the non-agricultural sector and respond by migrating inter-

nationally.

Our results add to the literature on short-term responses to weather shocks. We show

that negative shocks to agricultural production relate to migration decisions for two reasons.

First, rural households often live in regions with poor provision of public goods (such as irri-

gation structures) to mitigate the effects of weather shocks. These households also frequently

lack access to risk-management mechanisms. As a result, migration offers a way to coun-

teract income losses from negative weather shocks (Mueller et al., 2014; Kleemans, 2015).

Migration might also enable households to escape unbearably impoverished conditions—

including those caused by climate change—and to improve their welfare (Dell et al., 2014;

Mueller et al., 2014; Kleemans, 2015; Carleton and Hsiang, 2016). Like Mueller et al. (2020)

and Colmer (2021), we explored the role of labor markets for absorbing the job losses in

agriculture. We found that in the case of El Salvador local labor markets do not absorb

the displaced labor supply from the agricultural sector, pushing workers towards interna-

tional migration as a response to the loss of income. Possible factors contributing to this

situation include inadequate market integration, as well as unfavorable labor conditions in

non-agricultural and urban sectors, impeding the smooth transition to other sectors. Further

research on these topics is necessary.
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Policies should address both motivations. To prevent distress migration where agricul-

tural production is still feasible, policies should promote access to insurance and financial

markets to address the negative income effects and extend technical assistance to help rural

households adjust their agricultural practices to a changing climate (e.g., resistant seeds).

Humanitarian aid, which is rarely offered in response to extreme weather events (Baez et

al., 2017; Mueller et al., 2014), should be available as well. Furthermore, improved resilience

to negative weather shocks through better agricultural practices, resistant seeds, and public

goods such as irrigation could also prevent distress migration. Information about the benefits

of such policies could bolster arguments to increase investments in these public goods.

Policies should additionally aim to facilitate migration that can provide a pathway

out of poverty. Credit market access and other mechanisms to fund migration costs are

some examples of this (Bryan et al., 2014; Kleemans, 2015). Evaluation of the relationship

between access to financial/insurance markets and migration decisions would provide inputs

for better policy design. Kleemans (2015) explores how financial mechanisms interact with

migration decisions, while Munshi and Rosenzweig (2016) study how informal insurance

mechanisms shape migration decisions. Although there is growing evidence on the impact of

insurance mechanisms on the welfare and productivity of small rural farmers,62 we still lack

proof of how these mechanisms influence migration responses. Our paper makes important

contributions on these regards by showing that access to remittances might alleviate the need

to rely on reducing the labor demand of non-household workers. In this context it makes

sense to think about policies designed to reduce transaction fees and providing adequate

infrastructure of formal channels to send remittances (WB, 2023).

Finally, although our paper studies the effects of short-term responses to weather shocks

rather than long-term climatic adaptations, our results suggest short-term responses might

have long-term consequences. More research on long-term agricultural responses will aid in

62See, e.g., Carter and Lybbert (2012).
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understanding how to help rural households adapt to a changing climate.
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7 Figures

Figure 1: Average Temperature in El Salvador

Source: World Bank (2022). Data from Climatic Research Unit (CRU) of the University of East Anglia.
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Figure 2: Border Apprehension of Salvadoreans and Cost of Smugglers

Source: Own elaboration based on American Community Survey (ACS) and Customs and Border Protection (CBP).
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Figure 3: US Border Apprehensions

Source: Own elaboration based on US Customs and Border Protection (CBP) and NASA – Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Surface Temperature. The blue line represents the average number of weeks in winter with
a temperature shock (two SD above the historic mean).
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Figure 4: Migration Trends of Salvadoreans – EHPM and ACS

Source: Own elaboration based on American Community Survey (ACS) and El Salvador’s Multiple Purpose Household Survey
(EHPM). The lighter green line indicates the percentage of households with a member who was living in El Salvador a year
earlier, and the darker green line indicates the percentage of households in which all the members were living in El Salvador
a year earlier. The red line indicates the percentage of households surveyed in El Salvador that have a member living outside
the country who migrated in the same year.
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Figure 5: Temperature Shocks at the Municipality and Year Level

Source: Own elaboration based on NASA – Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Tempera-
ture. Each map represents the number of weeks in the first harvest season with a temperature shock (two SD above the historic
mean).
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8 Tables

Table 1: Impact of Temperature Shocks on Corn Agricultural Outcomes in First-Harvest Season

Agricultural Outcome (1) (2)

Panel A: Log(Total Production)
Temperature shock t -0.028 -0.032

(0.014)** (0.014)**
Temperature shock t-1 to t-4 -0.011

(0.035)
Obs 19,261 19,261
R2 0.244 0.245
Mean 1.917 1.917

Panel B: Log(Production per Ha.)
Temperature shock t -0.054 -0.058

(0.015)*** (0.016)***
Temperature shock t-1 to t-4 -0.076

(0.036)**
Obs 19,261 19,261
R2 0.277 0.279
Mean 2.342 2.342

Panel C: Log(Production per Ha. cultivated in corn)
Temperature shock t -0.046 -0.050

(0.009)*** (0.010)***
Temperature shock t-1 to t-4 -0.052

(0.029)*
Obs 18,618 18,618
R2 0.456 0.458
Mean 2.784 2.784

Panel D: Log(TFP production)
Temperature shock t -0.036 -0.039

(0.011)*** (0.012)***
Temperature shock t-1 to t-4 -0.020

(0.033)
Obs 16,438 16,438
R2 0.299 0.299
Mean 0.000 0.000

Panel E: Log(Labor productivity)
Temperature shock t -0.009 -0.012

(0.014) (0.014)
Temperature shock t-1 to t-4 0.030

(0.072)
Obs 18,784 18,784
R2 0.181 0.182
Mean 0.447 0.447
Crime, Weather and Household X X
Year Fixed Effects X X
Municipal Fixed Effects X X
Municipal Socio*Year X X
Geographic*Year X X
Household characteristics X X

Notes: Data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The dependent variable in panel A is the logarithm of the
ratio of corn production per hectare in the first harvest; in panel B, it is the logarithm of the total production per hectare in the first harvest; in
panel C, it is the logarithm of the total production per hectare dedicated to corn production in the first harvest; in panel D, it is the logarithm
of Total Factor Productivity (TFP) calculated using area cultivated in corn, total workers, and use of inputs and assets for production; and in
panel E, it is the logarithm of the total production per worker in the first harvest. The independent variables are the number of weeks with a
temperature shock (two sd higher than that week’s historic value in that municipality during the winter season) in the same year and the previous
two to five years. Municipality controls are the number of weeks with rainfall and drought shocks (two sd higher than that week’s historic value in
that municipality during the winter season) in the same year and the previous two to five years. We also control for the number of weeks with a
crime shock (two sd higher than that week’s historic value in that municipality during the winter season the same year). Municipal characteristics
are from 2005 and include poverty and extreme poverty prevalence, average income per capita, percentage of workers in agriculture, adolescents
missing school, percentage of internal migrants and emigrants, and percentage of population under 18 and 18–60 years old. Household controls
are household head education, number of household members, and access to irrigation for corn. Standard errors are clustered by municipality and
year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Impact of Temperature Shocks on Corn Agricultural Outcomes in First-Harvest Season

Input Land

Agricultural PCA Planting Agro- Chemical Agro- Log(total Log(corn
Outcome material chemicals agents ecological area) area)

(1) (2) (3) (4) (5) (6) (7)

Temperature Shock year t -0.020 -0.040 -0.024 -1.305 0.199 0.026 0.017
(0.010)** (0.046) (0.030) (0.636)** (0.265) (0.018) (0.010)*

Obs 17,573 17,573 17,573 17,573 17,573 19,261 18,623
R2 0.035 0.024 0.024 0.119 0.057 0.182 0.197
Mean 0.000 99.573 99.858 92.272 1.940 1.490 0.705

Year + Municipality FE X X X X X X X
Rainfall Shock year t-1 X X X X X X X
Drought Shock year t-1 X X X X X X X
Crime Shock year t-1 X X X X X X X
Municipal characteristics*Year X X X X X X X
Household characteristics X X X X X X X

Notes: Data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The dependent variables correspond to different inputs for
production. The first dependent variable is an index using principal components analysis that includes all the inputs considered in the corresponding
section. The second variable corresponds to planting material such as seeds and plants. The third variable is agrochemicals such as fertilizers,
fungicides, bactericides, pesticides, and insecticides. The fourth variable is chemical agents such as growth regulators, pre-harvest and post-harvest
ripening agents, and post-harvest product protection agents. The fifth variable corresponds to agro-ecological inputs such as compost, fertilizer,
bioinsecticides, biopesticides, and biofungicides. The dependent variables in the land section are the logarithm of the total cultivated area and the
logarithm of the cultivated area dedicated to corn production. The independent variable is temperature shock (two sd higher than the historic value
during the winter season the same year). Municipality controls are the number of weeks with rainfall, drought, and crime shocks (two sd higher
than that week’s historic value in that municipality during the winter season the same year). Municipal characteristics are from 2005 and include
poverty and extreme poverty prevalence, average income per capita, percentage of workers in agriculture, adolescents missing school, percentage of
internal migrants and emigrants, and percentage of population under 18 and 18–60 years old. Household controls are household head education,
number of household members, and access to irrigation for corn. Standard errors are clustered by municipality and year.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Impact of Temperature Shocks in First-Harvest Season on Agricultural Workers

Total Workers Non-Household Workers Household Workers

(1) (2) (3)

Temperature Shock t −0.018∗ −0.029∗∗∗ 0.015
(0.011) (0.011) (0.015)

Mean workers 5.4 3.7 1.71
Year + Municipality FE X X X
Rainfall Shock year t X X X
Drought Shock year t X X X
Crime Shock year t-1 X X X
Municipal characteristics*Year X X X
Household characteristics X X X
Observations 18,845 18,845 18,845
R2 0.103 0.113 0.231

Data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The dependent variables correspond to the inverse hyperbolic
sine of the number of workers and number of household workers. The independent variables are temperature shock (two sd higher than the historic
value during the winter season the previous year) in t. Municipality controls are the number of weeks with rainfall, drought, and crime shocks (two
sd higher than that week’s historic value in that municipality during the winter season the same year). Municipal characteristics are from 2005
and include poverty and extreme poverty prevalence, average income per capita, percentage of workers in agriculture, adolescents missing school,
percentage of internal migrants and emigrants, and percentage of population under 18 and 18–60 years old. Household controls are household head
education, number of household members, and access to irrigation for corn. Standard errors are clustered by municipality and year.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Impact of Temperature Shocks in First-Harvest Season on Individual Labor Outcomes

All workers Workers in Workers in Agro Workers in Agro Workers in
Agro (seasonal) (Corn) Non-Agro

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A:
Hours(log)
Temperature Shock t 0.002 0.002 0.006 0.005 0.004 0.006 0.003 0.006 0.000 0.001

(0.002) (0.003) (0.003)** (0.005) (0.003) (0.004) (0.004) (0.005) (0.003) (0.003)

Temperature Shock t-1 to t-4 -0.006 0.004 0.010 0.008 -0.007
(0.006) (0.012) (0.016) (0.016) (0.006)

Obs 328,288 259,249 79,000 60,816 50,857 39,783 45,746 35,742 249,288 198,433
R2 0.065 0.068 0.088 0.089 0.075 0.080 0.079 0.085 0.059 0.062
Mean 40.742 40.743 34.748 34.575 32.489 32.314 31.962 31.738 42.642 42.634

Panel B:
Hourly wage (log(SCP ))

Temperature Shock t 0.008 0.003 0.022 0.000 0.024 0.016 0.000 -0.012 -0.001 -0.002
(0.011) (0.009) (0.028) (0.023) (0.022) (0.018) (0.018) (0.016) (0.005) (0.005)

Temperature Shock t-1 to t-4 -0.034 -0.020 0.034 0.026 -0.022
(0.016)** (0.053) (0.074) (0.049) (0.012)*

Obs 265,442 210,609 34,267 26,633 19,253 15,193 15,074 11,839 231,175 183,976
R2 0.129 0.120 0.255 0.282 0.397 0.414 0.480 0.500 0.108 0.098
Mean 9.039 8.923 3.671 3.755 3.770 3.842 3.759 3.823 9.835 9.671
Year + Municipality FE X X X X X X X X X X
Rainfall Shock X X X X X X X X X X
Drought Shock X X X X X X X X X X
Crime Shock year t-1 X X X X X X X X X X
Municipal characteristics*Year X X X X X X X X X X
Household characteristics X X X X X X X X X X

Notes: Individual data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for people 10–65 years old. The dependent
variable in panel A is the logarithm of the number of hours worked. The dependent variable in panel B is the logarithm of the hourly wage. The
independent variable is the number of weeks with a temperature shock (two sd higher than that week’s historic value in that municipality during
the winter season) in the same year and the previous one to four years. Controls are the same as in Table 4. Standard errors are clustered by
municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Impact of Temperature Shocks in First-Harvest Season on Probability of International Migration

Population Group (1) (2)

Panel A: All Households
Temperature shock t-1 0.049 0.034

(0.065) (0.068)
Temperature shock t-2 to t-5 0.048

(0.147)
Obs 186,910 130,689
R2 0.008 0.009
Mean 0.876 0.940

Panel B: Agricultural Households (all)
Temperature shock t-1 0.085 0.129

(0.088) (0.085)
Temperature shock t-2 to t-5 0.020

(0.242)
Obs 22,268 14,277
R2 0.020 0.021
Mean 0.799 0.805

Panel C: Agricultural Households (seasonal)
Temperature shock t-1 0.225 0.264

(0.107)** (0.109)**
Temperature shock t-2 to t-5 -0.087

(0.294)
Obs 14,334 9,370
R2 0.022 0.025
Mean 0.656 0.726

Panel D: Agricultural Households (corn)
Temperature shock t-1 0.245 0.273

(0.124)** (0.119)**
Temperature shock t-2 to t-5 -0.248

(0.329)
Obs 12,659 8,251
R2 0.022 0.027
Mean 0.695 0.788

Panel E: Non Agricultural Households
Temperature shock t-1 0.015 -0.009

(0.047) (0.053)
Temperature shock t-2 to t-5 0.091

(0.104)
Obs 110,747 78,533
R2 0.007 0.008
Mean 0.654 0.695
Year + Municipality FE X X
Rainfall Shock year t-1 X X
Drought Shock year t-1 X X
Crime Shock year t-1 X X
Municipal characteristics*Year X X
Household characteristics X X

Notes: Data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM). The dependent variable is 100 if a household member
migrated in the surveyed year. The independent variable is the number of weeks with a temperature shock (two sd higher than that week’s historic
value in that municipality during the winter season) in the previous year and the previous two to five years. Panel A: all households. Panel B: a
household is defined as agricultural when the household head and at least 50 percent of the members of working age are employed in agriculture.
Panel C: a household is defined as agricultural (seasonal) if it is an agricultural household and at least 50 percent of the members of working age
are employed producing seasonal crops. Panel D: a household is defined as agricultural (corn) if it is an agricultural household and at least 50
percent of the members of working age are employed producing corn. Panel E: a household is defined as non-agricultural when the household head
or at least 50 percent of the members of working age are employed in the non-agricultural sector. Municipality controls are the number of weeks
with rainfall and drought shocks (two sd higher than that week’s historic value in that municipality during the winter season) in the same year and
the previous two to five years. We also control for the number of weeks with a crime shock (two sd higher than that week’s historic value in that
municipality during the winter season the same year). Municipal characteristics are from 2005 and include poverty and extreme poverty prevalence,
average income per capita, percentage of workers in agriculture, adolescents missing school, percentage of internal migrants and emigrants, and
percentage of population under 18 and 18–60 years old. Household controls are age and gender of the household head, and number of household
members. Standard errors are clustered by municipality and year.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Heterogeneity by Access to Risk-Management Mechanisms: ENAMP Outcomes

Population Group Access Remittances
Credit (Population %)

Panel A: Log(Total Production)
Temperature shock t 0.025 -0.024

(0.045) (0.021)
Temperature shock t x Q4 -0.037 -0.050

(0.048) (0.037)
Obs 7,629 8,249
R2 0.326 0.240
Mean 1.979 1.794

Panel B: Log(Production per Ha. cultivated in corn)
Temperature shock t 0.000 -0.032

(0.044) (0.012)**
Temperature shock t x Q4 -0.023 -0.045

(0.044) (0.033)
Obs 7,382 7,995
R2 0.521 0.461
Mean 2.310 2.284

Panel C: PCA - Input
Temperature shock t -0.005 0.016

(0.017) (0.013)
Temperature shock t x Q4 -0.033 -0.029

(0.033) (0.035)
Obs 6,927 7,490
R2 0.048 0.047
Mean 0.035 0.017

Panel D: Total Workers
Temperature shock t -0.053 -0.038

(0.028)* (0.018)**
Temperature shock t x Q4 0.034 0.092

(0.027) (0.044)**
Obs 7,473 8,087
R2 0.129 0.107
Mean 5.637 5.039

Panel E: Non-Household Workers
Temperature shock t -0.046 -0.045

(0.030) (0.021)**
Temperature shock t x Q4 0.003 0.118

(0.031) (0.057)**
Obs 7,473 8,087
R2 0.145 0.112
Mean 3.916 3.253

Panel F: Household Workers
Temperature shock t -0.033 -0.003

(0.033) (0.018)
Temperature shock t x Q4 0.053 0.026

(0.031)* (0.041)
Obs 7,473 8,087
R2 0.252 0.224
Mean 1.721 1.786
Year + Municipality FE X X
Rainfall Shock year t-1 X X
Drought Shock year t-1 X X
Crime Shock year t-1 X X
Municipal characteristics*Year X X
Household controls X X

Notes: Data from 2013–2018 of ENAMP. Dependent variable in panel A is log of ratio of corn prod. per hectare in first harvest; in panel B, it is
log total prod. per hectare in first harvest; in panel C, is an index using principal components analysis as in Table 2; in panel D, is the IHS of
number total workers, in panel E, is the IHS of number of non-hh workers; in panel F, is the IHS of the number of HH workers. Temperature shock
measured as in previous estimations. In column (1) we restrict the sample to municipalities that are in the first or fourth quartile of the distribution
of the share of the population with access to credit in 2009. We interact the independent variable with a dummy that indicates if the municipality
is in the fourth quartile. In column (2) we restrict the sample to municipalities that are in the first or fourth quartile of the distribution of the
share of the population with remittances in 2007. We interact the independent variable with a dummy that indicates if the municipality its in the
fourth quartile. Same controls of previous models, and we fully interact the model with dummy that indicates if the municipality is in the fourth
quartile of the corresponding distribution. Standard errors are clustered by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Heterogeneity by Access to Risk-Management Mechanisms: EHPM Outcomes

Population Group Access Remittances
Group Credit (Population %)

Panel A: Likelihood of working in the agricultural sector (corn)
Temperature shock t -0.773 -0.286

(0.179)*** (0.103)**
Temperature shock t x Q4 -0.093 -0.073

(0.323) (0.244)
Obs 82,854 117,414
R2 0.232 0.232
Mean 19.405 17.740

Panel B: Hours(log) in the agricultural sector (corn)
Temperature shock t -0.005 -0.010

(0.012) (0.010)
Temperature shock t x Q4 -0.009 0.026

(0.011) (0.011)**
Obs 16,078 20,829
R2 0.095 0.094
Mean 32.286 31.766

Panel C: Hourly wage (log(SCP )) in the agricultural sector (corn)
Temperature shock t 0.037 0.035

(0.022)* (0.026)
Temperature shock t x Q4 -0.038 -0.063

(0.022)* (0.024)**
Obs 5,291 6,388
R2 0.315 0.306
Mean 0.156 0.159

Panel D: Migration likelihood in agricultural households (corn)
Temperature shock t-1 0.239 0.031

(0.389) (0.042)
Temperature shock t-1 x Q4 0.016 0.233

(0.247) (0.216)
Obs 4,584 5,642
R2 0.033 0.030
Mean 0.589 0.709
Year + Municipality FE X X
Rainfall Shock year t-1 X X
Drought Shock year t-1 X X
Crime Shock year t-1 X X
Municipal characteristics*Year X X
Individual or household controls X X

Notes: Individual data from 2009–2018 of EHPM. In panels A, B and C, the sample is constrained the sample for people 10–65 years old. In Panel
A we also restrict the sample to employed individuals; in Panel B and C to individuals working in the agricultural sector producing corn; in panel
D to agricultural households (corn). A household is defined as agricultural (corn) if the household head and at least 50 percent of the members of
working age are employed in agriculture and employed producing corn. The dependent variable in panel A is 100 if the person is employed in the
agricultural sector producing corn; in panel B, is the logarithm of the number of hours worked; in panel C, is the logarithm of the hourly wage; in
panel D, is 100 if a household member migrated in the surveyed year. For panels A, B and C, the independent variable is the number of weeks
with a temperature shock (two sd higher than that week’s historic value in that municipality during the winter season the same year); for panel D,
it is the number of weeks with a temperature shock (two sd higher than that week’s historic value in that municipality during the winter season
the previous year). In column (1) we restrict the sample to municipalities that are in the first or fourth quartile of the distribution of the share
of the population with access to credit in 2009. We interact the independent variable with a dummy that indicates if the municipality is in the
fourth quartile. In column (2) we restrict the sample to municipalities that are in the first or fourth quartile of the distribution of the share of
the population with remittances in 2007. We interact the independent variable with a dummy that indicates if the municipality is in the fourth
quartile. Municipality controls as in previous models. We also interact the controls with the dummy that indicates if the municipality is in the
fourth quartile of the corresponding distribution. Standard errors are clustered by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Impact of Temperature Shocks on Migration Likelihood – Different Shocks

Preferred specification Changing the months of the shocks Changing the range of years

Population Group Main Harvest Season Shock All-year Shock Apante Shock Lean Shock 2013-2018 Excluding 2015
(1) (2) (3) (4) (5) (6)

Panel A: Share of workers in the agricultural sector (corn)
Temperature shock year t -0.277 -0.073 0.108 0.112 -0.380 -0.281

(0.117)** (0.068) (0.161) (0.218) (0.135)** (0.156)*
Obs 2,239 2,239 2,239 2,239 1,361 2,010
R2 0.760 0.759 0.759 0.759 0.795 0.758
Mean 9.066 9.066 9.066 9.066 8.620 9.113

Panel B: Log (average hourly wage (SCP )) in the agricultural sector (corn)
Temperature shock year t 0.006 -0.009 0.003 -0.031 0.015 0.001

(0.012) (0.006) (0.024) (0.014)** (0.012) (0.015)
Obs 1,573 1,573 1,573 1,573 924 1,407
R2 0.328 0.329 0.327 0.328 0.391 0.346
Mean 0.176 0.176 0.176 0.176 0.166 0.179

Panel C: Migration likelihood in agricultural households (corn)
Temperature shock year t-1 0.245 0.046 -0.176 -0.106 0.315 0.306

(0.124)** (0.039) (0.223) (0.099) (0.137)** (0.126)**
Obs 12,659 12,659 12,659 12,659 6,946 11,156
R2 0.022 0.022 0.022 0.022 0.029 0.025
Mean 0.695 0.695 0.695 0.695 0.864 0.717

Year + Municipality FE X X X X X X
Rainfall Shock year t-1 X X X X X X
Drought Shock year t-1 X X X X X X
Crime Shock year t-1 X X X X X X
Municipal characteristics*Year X X X X X X
Household characteristics X X X X X X

Notes: Estimations in panels A and B use individual data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for
people 10–65 years old. The dependent variable in panel A is the share of workers employed producing corn according to the total number of
workers for each municipality and year. The dependent variable in panel B is the logarithm of the average wage in the corresponding sector for
each municipality and year, correspondingly. Panel C uses data from El Salvador’s Multiple Purpose Household Survey (EHPM) 2009–2018. The
dependent variable in panel C is 100 if a household member migrated in the surveyed year. The sample is constrained to agricultural households
(corn). A household is defined as agricultural (corn) if the household head and at least 50 percent of the members of working age are employed in
agriculture and employed producing corn. For panels A and B: the independent variable in Column (1) is the number of weeks with a temperature
shock (two sd higher than that week’s historic value in that municipality the same year). The independent variable in Column (2) is the number
of weeks with a temperature shock (two sd higher than that week’s historic value in that municipality during the first-harvest season the previous
year). The independent variable in Column (3) is the number of weeks with a temperature shock (two sd higher than that week’s historic value in
that municipality during all the previous year). The independent variable in Column (4) is the number of weeks with a temperature shock (two sd
higher than that week’s historic value in that municipality during the lean season the previous year). The independent variable in Columns (5)–(7)
is the number of weeks with a temperature shock (two sd higher than that week’s historic value in that municipality during the winter season the
previous year). Column (5) comprises 2013–2018. Column (6) comprises 2009–2018, excluding 2015. In panel C, we have the same shocks as in
the previous year. Municipality controls are the number of weeks with rainfall and drought shocks (two sd higher than that week’s historic value
in that municipality during the winter season the same year or the previous year, depending on the independent variable). We also control for the
number of weeks with a crime shock (two sd higher than that week’s historic value in that municipality during the winter season the same year).
Municipal characteristics are from 2005 and include poverty and extreme poverty prevalence, average income per capita, percentage of workers in
agriculture, adolescents missing school, percentage of internal migrants and emigrants, and percentage of population under 18 and 18–60 years old.
Since the estimations in panels A and B are at municipality level, we do not include household controls. Household controls in panel C are age
and gender of the household head, and number of household members. Standard errors are clustered by municipality and year. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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9 Appendix

Figure A1: Timeline of Data

Source: Own elaboration based on El Salvador’s Multiple Purpose Household Survey (EHPM), El Salvador’s Agricultural Household Survey

(ENAMP) and NASA – Moderate Resolution Imaging Spectroradiometer (MODIS).
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Figure A2: Production of Corn versus Other Staple Crops in El Salvador

Source: Own elaboration based on FAOSTAT. Staple crops include corn (maize), rice, sorghum, and beans.
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Figure A3: Corn Production across Yearly Seasons in El Salvador

Source: Own elaboration based on ENAMP 2013–2018.
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Figure A4: 1,000 Permutations of Temperature Shocks by Geography:
Coefficients on Migration Likelihood

Source: Own elaboration based on Individual data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for
people 10–65 years old. The red dotted line shows the coefficient with the corresponding temperature shocks.
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Figure A5: 1,000 Permutations of Temperature Shocks by Geography:
Coefficients on Agricultural Productivity

Source: Own elaboration based on Data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The red dotted line
shows the coefficient with the corresponding temperature shocks.
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Table A1: Descriptive Statistics: Outcome Variables

Variable N Mean Std. Dev. Min Max

Panel A: EHPM

$=$100 if at least one migrant member last year 186910 0.876 9.320 0.000 100.000

Employed 639412 51.342 49.982 0.000 100.000

Employed in agricultural sector 639412 12.476 33.045 0.000 100.000

Employed in agricultural sector (seasonal) 639412 8.033 27.18 0.000 100.000

Employed in agricultural sector (corn) 639412 7.224 25.888 0.000 100.000

Employed in the non agricultural sector 639412 38.987 48.772 0.000 100.000

Weekly hours worked - agricultural sector
(corn)

328288 40.742 16.417 1.000 84.000

Hourly wage ($SCV) - agricultural sector (corn) 265442 9.039 41.503 0.013 8288.574

Panel B: ENAMP

Corn production (ton.) 19261 1.917 1.892 0.001 58.880

Corn - productivity (ton. per ha) 19261 2.342 1.209 0.000 19.189

Corn - productivity (ton. per ha cultived in
corn)

18618 2.784 1.029 0.006 8.470

TFP production 16494 0.000 0.693 -21.843 1.544

Corn - productivity (ton. per worker) 18784 0.447 0.415 0.000 9.660

Total workers 18845 5.404 7.325 0.000 494.000

Hired workers 18845 3.696 7.379 0.000 494.000

Household workers 18845 1.708 1.570 0.000 43.000

PCA index of inputs 17568 0.000 1.000 -25.361 0.140

Planting material ($=$100 if used) 17568 99.573 6.520 0.000 100.000

Agrochemicals ($=$100 if used) 17568 99.858 3.770 0.000 100.000

Chemical agents ($=$100 if used) 17568 92.270 26.707 0.000 100.000

Agroecological ($=$100 if used) 17568 1.941 13.797 0.000 100.000

Land Size (Ha) 19261 1.490 4.832 0.077 210.000

Land Size cultivated in corn (Ha) 18618 0.493 0.486 0.039 31.850

Note: Panel A shows descriptive statistics for El Salvador’s Multiple Purpose Household Survey (EHPM) from 2009–2018 at the
household level. Panel B shows data from 2013–2018 of El Salvador’s Agricultural Household Survey at the producer level.
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Table A2: Descriptive Statistics: Control Variables

Variable N Mean Std. Dev. Min Max

Panel A: EHPM

Male head 186910 0.667 0.471 0.000 1.000

Age of head 186910 47.754 16.405 14.000 98.000

Household size 186910 3.864 1.957 1.000 24.000

Owns land 186910 0.067 0.250 0.000 1.000

Has agricultural credit 186910 0.033 0.178 0.000 1.000

Head employer 140850 0.060 0.238 0.000 1.000

Panel B: ENAMP

Highest education level 19261 2.465 0.925 0.000 6.000

Has irrigation 19261 0.004 0.067 0.000 1.000

Household size 19261 4.284 2.064 1.000 16.000

Panel C: Municipalities

Number of weeks temperature 2sd > historic
mean

244 1.135 0.583 0.000 4.000

Number of weeks rainfall 2sd > historic mean 244 0.115 0.150 0.000 0.833

Number of weeks rainfall 2sd < historic mean 244 0.317 0.232 0.000 1.000

Number of weeks crime 2sd > historic mean 244 0.310 0.261 0.000 1.000

Historic mean temperature 244 30.96 2.247 23.831 35.477

Historic mean rainfall 244 244.231 22.383 179.055 297.771

Historic standard deviation of rainfall 244 63.268 12.121 38.306 96.341

Mean elevation 244 498.362 278.794 9.677 1522.368

Extension 244 83.733 88.237 5.400 668.360

Poverty rate (2005) 244 50.632 14.944 10.370 88.500

Extreme poverty (2005) 244 25.751 12.596 4.200 60.400

Income per capita (2005) 244 561.074 266.001 212.600 2763.520

% employed in agriculture (2005) 244 39.903 29.319 0.520 393.870

% young adults (16 and 18) not enrolled in
school (2005)

244 52.183 13.539 5.500 84.270

% households with no access to drinking water
(2005)

244 34.707 20.223 0.100 98.600

% people less than 19 years old (2007) 244 47.541 4.145 30.800 57.300

% people more than 60 years old (2007) 244 9.879 1.954 5.400 19.000

% Internal immigrants 244 19.031 13.552 1.245 108.087

% External immigrants 244 29.947 26.330 3.862 234.916

% Population who received remittances in 2009 244 9.915 8.773 0.881 110.097

Note: Panel A shows descriptive statistics for El Salvador’s Multiple Purpose Household Survey (EHPM) from 2009–2018 at the
household level. Panel B shows data from 2013 – 2018 of El Salvador’s Agricultural Household Survey at the producer level. Panel C
shows municipality-level statistics for 2009–2018. The temperature, rainfall and crime shock statistics are calculated using the municipal
average. The historic mean and standard deviation are calculated for the period between 2001 and 2006.
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Table A3: Impact of Temperature Shocks on Corn Agricultural Outcomes in First-Harvest Season

Agricultural Outcome (1) (2) (3) (4) (5) (6) Mean Obs

A: Log(Total Production)
Temperature shock year t -0.060 -0.027 -0.028 -0.028 -0.027 -0.028 1.917 19,261

(0.025)** (0.013)** (0.013)** (0.013)** (0.014)** (0.014)**
R2 0.012 0.228 0.228 0.228 0.232 0.244

B: Log(Production per Ha.)

Temperature shock year t -0.105 -0.055 -0.055 -0.056 -0.055 -0.054 2.342 19,261
(0.034)** (0.017)** (0.018)** (0.018)** (0.015)*** (0.015)***

R2 0.033 0.268 0.268 0.268 0.271 0.277

C: Log(Production per Ha. cultivated in corn)

Temperature shock year t -0.098 -0.053 -0.049 -0.049 -0.046 -0.046 2.784 18,618
(0.027)*** (0.011)*** (0.012)*** (0.012)*** (0.009)*** (0.009)***

R2 0.065 0.447 0.448 0.448 0.455 0.456

D: Log(TFP production)

Temperature shock year t -0.082 -0.037 -0.039 -0.040 -0.036 -0.036 0.000 16,438
(0.024)*** (0.012)** (0.012)** (0.012)** (0.011)*** (0.011)***

R2 0.031 0.289 0.289 0.289 0.293 0.299

E: Log(Labor productivity)

Temperature shock year t -0.051 -0.002 -0.012 -0.014 -0.009 -0.009 0.447 18,784
(0.025)** (0.016) (0.017) (0.016) (0.013) (0.014)

R2 0.008 0.174 0.176 0.177 0.180 0.181

Year + Municipality FE X X X X X
Rainfall Shock year t-1 X X X X
Drought Shock year t-1 X X X X
Crime Shock year t-1 X X X
Municipal characteristics*Year X X
Household characteristics X

Notes: Data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The dependent variable in panel A is the logarithm

of the ratio of corn production per hectare in the first harvest; in panel B, it is the logarithm of the total production per hectare in the first

harvest; in panel C, it is the logarithm of the total production per hectare dedicated to corn production in the first harvest; in panel D, it

is the logarithm of Total Factor Productivity (TFP) calculated using area cultivated in corn, total of workers, and use of inputs and assets

for production; and in panel E, it is the logarithm of the total production per worker in the first harvest. The independent variable is the

number of weeks with a temperature shock (two SD higher than that week’s historic value in that municipality during the winter season

the same year). Municipality controls are the number of weeks with rainfall, drought, and crime shocks (two SD higher than that week’s

historic value in that municipality during the winter season the same year). Municipal characteristics are from 2005 and include poverty

and extreme poverty prevalence, average income per capita, percentage of workers in agriculture, adolescents missing school, percentage

of internal migrants and emigrants, and percentage of population under 18 and 18–60 years old. Household controls are household head

education, number of household members, and access to irrigation for corn. Standard errors are clustered by municipality and year. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table A4: Impact of Temperature Shocks on Corn Agricultural Outcomes in First-Harvest Season using
Conley Standard Errors

Agricultural Outcome (1) (2)

A: Log(Total Production)

Temperature shock t -0.028 -0.032

(0.009)** (0.009)***

Temperature shock t-1 to t-4 -0.004

(0.020)

Mean 1.917 1.917

B: Log(Production per Ha.)

Temperature shock t -0.054 -0.059

(0.013)*** (0.014)***

Temperature shock t-1 to t-4 -0.068

(0.033)**

Mean 2.342 2.342

C: Log(Production per Ha. cultivated in corn)

Temperature shock t -0.047 -0.051

(0.012)*** (0.012)***

Temperature shock t-1 to t-4 -0.044

(0.022)**

Mean 2.784 2.784

F: Log(TFP production)

Temperature shock t -0.036 -0.039

(0.012)** (0.012)***

Temperature shock t-1 to t-4 -0.039

(0.019)

Mean 0.000 0.000

D: Log(Labor productivity)

Temperature shock t -0.010 -0.013

(0.015) (0.016)

Temperature shock t-1 to t-4 0.038

(0.036)

Mean 0.447 0.447

Crime, Weather and Household X X

Year Fixed Effects X X

Municipal Fixed Effects X X

Municipal Socio*Year X X

Geographic*Year X X

Household characteristics X X

Notes: Data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The dependent variable in panel A is the logarithm

of the ratio of corn production per hectare in the first harvest; in panel B, it is the logarithm of the total production per hectare in the first

harvest; in panel C, it is the logarithm of the total production per hectare dedicated to corn production in the first harvest; in panel D, it

is the logarithm of Total Factor Productivity (TFP) calculated using area cultivated in corn, total workers, and use of inputs and assets for

production; and in panel E, it is the logarithm of the total production per worker in the first harvest. The independent variables are the

number of weeks with a temperature shock (two SD higher than that week’s historic value in that municipality during the winter season) in

the same year and the previous two to five years. Municipality controls are the number of weeks with rainfall and drought shocks (two SD

higher than that week’s historic value in that municipality during the winter season) in the same year and the previous two to five years.

We also control for the number of weeks with a crime shock (two SD higher than that week’s historic value in that municipality during the

winter season the same year). Municipal characteristics are from 2005 and include poverty and extreme poverty prevalence, average income

per capita, percentage of workers in agriculture, adolescents missing school, percentage of internal migrants and emigrants, and percentage

of population under 18 and 18–60 years old. Household controls are household head education, number of household members, and access

to irrigation for corn. Standard errors are clustered by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5: Impact of Temperature Shocks in First-Harvest Season on Local Labor Markets- Municipal
Shares

Agricultural Agricultural (seasonal) Agricultural (corn) Non-Agro Unemployed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A:

Employment and unemployment rate

Temperature Shock t -0.323 -0.295 -0.238 -0.253 -0.277 -0.307 0.168 0.044 0.142 0.249

(0.114)** (0.101)** (0.123)* (0.144)* (0.117)** (0.138)** (0.105) (0.047) (0.121) (0.098)**

Temperature Shock t-1 to t-4 0.123 -0.694 -0.622 0.286 -0.457

(0.510) (0.527) (0.465) (0.658) (0.707)

Obs 2,239 1,793 2,239 1,793 2,239 1,793 2,239 1,793 2,239 1,793

R2 0.758 0.776 0.745 0.766 0.760 0.781 0.795 0.806 0.460 0.486

Mean 15.091 14.856 9.842 9.760 9.066 8.973 35.127 35.910 49.917 49.332

Panel B:

Log (average hourly wage (SCP ))

Temperature Shock t 0.012 -0.004 0.020 0.010 0.000 -0.009 0.001 -0.001

(0.020) (0.019) (0.027) (0.024) (0.022) (0.023) (0.008) (0.009)

Temperature Shock t-1 to t-4 0.127 0.209 0.214 -0.030

(0.055)** (0.064)** (0.061)*** (0.031)

Obs 1,904 1,510 1,657 1,323 1,573 1,254 2,237 1,792

R2 0.341 0.374 0.389 0.415 0.396 0.419 0.362 0.397

Mean 4.947 4.915 4.877 4.906 4.859 4.936 9.596 9.570

Year + Municipality FE X X X X X X X X X X

Rainfall Shock X X X X X X X X X X

Drought Shock X X X X X X X X X X

Crime Shock year t-1 X X X X X X X X X X

Municipal characteristics*Year X X X X X X X X X X

Notes: Individual data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for people 10–65 years old. The

dependent variable in panel A is the share of workers in the corresponding sector according to the working-age population for each

municipality and year. The dependent variable in panel B is the logarithm of the average hourly wage in the corresponding sector for each

municipality and year. The independent variables are the number of weeks with a temperature shock (two sd higher than that week’s

historic value in that municipality during the winter season) in the same year and the previous one to four years. Municipality controls

are the number of weeks with rainfall and drought shocks (two sd higher than that week’s historic value in that municipality during the

winter season) in the same year and the previous one to four years. We also control for the number of weeks with a crime shock (two sd

higher than that week’s historic value in that municipality during the winter season the same year). Municipal characteristics are from 2005

and include poverty and extreme poverty prevalence, average income per capita, percentage of workers in agriculture, adolescents missing

school, percentage of internal migrants and emigrants, and percentage of population under 18 and 18–60 years old. Standard errors are

clustered by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6: Impact of Temperature Shocks in First-Harvest Season on Labor Outcomes

All workers Workers in Workers in Agro Workers in Agro Workers in

Agro (seasonal) (Corn) Non-Agro

(1) (2) (3) (4) (5)

Panel A: Hours(log)

Women

Temperature Shock t 0.004 0.015 0.009 0.007 0.001

(0.004) (0.008)* (0.016) (0.024) (0.004)

Obs 130,507 7,305 3,021 2,336 123,202

R2 0.049 0.221 0.138 0.150 0.043

Mean 40.052 31.513 27.509 26.127 40.558

Men

Temperature Shock t 0.001 0.004 0.004 0.003 0.000

(0.002) (0.003) (0.003) (0.004) (0.002)

Obs 197,781 71,695 47,836 43,410 126,086

R2 0.082 0.083 0.070 0.073 0.040

Mean 41.198 35.077 32.804 32.276 44.678

Panel B: Hourly wage (log(SCP ))

Women

Temperature Shock t -0.005 0.024 0.036 0.229 -0.007

(0.006) (0.019) (0.051) (0.094)** (0.005)

Obs 114,327 3,245 879 387 111,082

R2 0.106 0.223 0.408 0.627 0.102

Mean 9.367 3.529 3.808 3.622 9.537

Men

Temperature Shock t 0.017 0.018 0.022 -0.005 0.004

(0.016) (0.027) (0.022) (0.015) (0.008)

Obs 151,115 31,022 18,374 14,687 120,093

R2 0.158 0.273 0.404 0.484 0.122

Mean 8.791 3.686 3.769 3.763 10.110

Year + Municipality FE X X X X X

Rainfall Shock year t X X X X X

Drought Shock year t X X X X X

Crime Shock year t-1 X X X X X

Municipal characteristics*Year X X X X X

Household characteristics X X X X X

Notes: Individual data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for people 10–65 years old. The

dependent variable in Panel A is the logarithm of the number of hours worked. The dependent variable in Panel B is the logarithm of the

hourly wage. Within each panel, we divide the sample by gender. The independent variable is the number of weeks with a temperature

shock (two SD higher than that week’s historic value in that municipality during the winter season) in the same year. Municipality controls

are the number of weeks with rainfall and drought shocks (two SD higher than that week’s historic value in that municipality during the

winter season) in the same year. We also control for the number of weeks with a crime shock (two SD higher than that week’s historic value

in that municipality during the winter season the same year). Municipal characteristics are from 2005 and include poverty and extreme

poverty prevalence, average income per capita, percentage of workers in agriculture, adolescents missing school, percentage of internal

migrants and emigrants, and percentage of population under 18 and 18–60 years old. Standard errors are clustered by municipality and

year.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

11



Table A7: Impact of Temperature Shocks in First-Harvest Season on Labor Outcomes

All workers Workers in Workers in Agro Workers in Agro Workers in

Agro (seasonal) (Corn) Non-Agro

(1) (2) (3) (4) (5)

Panel A: Hours(log)

Less than 14 years old

Temperature Shock t 0.022 0.046 0.034 0.047 -0.009

(0.013)* (0.014)** (0.021) (0.014)*** (0.022)

Obs 6,932 3,738 2,473 3,811 3,194

R2 0.096 0.143 0.151 0.138 0.124

Mean 22.142 22.505 21.418 22.539 21.717

Between 14 and 18 years old

Temperature Shock t 0.014 0.013 0.010 0.014 0.017

(0.010) (0.011) (0.011) (0.010) (0.015)

Obs 19,174 9,756 6,631 10,025 9,418

R2 0.069 0.098 0.111 0.094 0.095

Mean 30.411 29.101 27.595 29.200 31.769

Between 18 and 65 years old

Temperature Shock t 0.001 0.002 0.000 0.001 0.000

(0.002) (0.003) (0.003) (0.003) (0.003)

Obs 299,516 64,471 41,157 67,213 235,045

R2 0.050 0.071 0.055 0.066 0.050

Mean 41.844 36.286 33.910 36.385 43.369

More than 65 years old

Temperature Shock t 0.007 -0.010 -0.005 -0.003 0.014

(0.021) (0.025) (0.046) (0.026) (0.024)

Obs 2,666 1,035 596 1,050 1,631

R2 0.141 0.354 0.385 0.349 0.160

Mean 39.641 36.361 34.740 36.287 41.723

Panel B: Hourly wage (log(SCP ))

Less than 14 years old

Temperature Shock t 0.052 -0.057 -0.042 -0.028 0.149

(0.069) (0.092) (0.189) (0.080) (0.077)*

Obs 1,126 442 224 471 684

R2 0.387 0.554 0.787 0.538 0.466

Mean 3.418 3.299 4.013 3.581 3.495

Between 14 and 18 years old

Temperature Shock t 0.026 0.032 0.031 0.038 0.011

(0.017) (0.033) (0.030) (0.031) (0.019)

Obs 8,371 3,161 1,886 3,337 5,210

R2 0.228 0.375 0.507 0.362 0.198

Mean 3.951 3.716 4.065 3.762 4.093

Between 18 and 65 years old

Temperature Shock t 0.006 0.021 0.028 0.021 -0.002

(0.010) (0.027) (0.022) (0.025) (0.005)

Obs 254,097 30,364 17,007 32,910 223,733

R2 0.115 0.251 0.392 0.233 0.095

Mean 9.216 3.674 3.736 4.019 9.968

More than 65 years old

Temperature Shock t 0.014 -0.043 -0.086 -0.073 -0.013

(NaN) (0.110) (0.270) (0.097) (0.013)

Obs 1,848 300 136 315 1,548

R2 0.230 0.687 0.931 0.680 0.192

Mean 11.177 3.466 3.600 3.696 12.671

Year + Municipality FE X X X X X

Rainfall Shock year t X X X X X

Drought Shock year t X X X X X

Crime Shock year t-1 X X X X X

Municipal characteristics*Year X X X X X

Household characteristics X X X X X

Notes: Individual data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for people 10–65 years old. The

dependent variable in Panel A is the logarithm of the number of hours worked. The dependent variable in Panel B is the logarithm of the

hourly wage. Within each panel, we divide the sample by age group. The independent variable is the number of weeks with a temperature

shock (two SD higher than that week’s historic value in that municipality during the winter season) in the same year. Same controls as in

Table A6. Standard errors are clustered by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A8: Impact of Temperature Shocks in First-Harvest Season on Migration Likelihood

Population Group (1) (2) (3) (4) (5) (6) Mean Obs

Panel A: All Households
Temperature shock year t-1 0.107 0.058 0.044 0.037 0.046 0.049 0.876 186,910

(0.050)** (0.072) (0.062) (0.058) (0.061) (0.065)
R2 0.000 0.006 0.006 0.006 0.006 0.008

Panel B: Agricultural Households (all)

Temperature shock year t-1 0.100 0.049 0.044 0.041 0.073 0.085 0.799 22,268
(0.043)** (0.081) (0.085) (0.086) (0.084) (0.088)

R2 0.000 0.012 0.012 0.012 0.014 0.020

Panel C: Agricultural Households (seasonal)

Temperature shock year t-1 0.177 0.209 0.201 0.198 0.216 0.225 0.656 14,334
(0.041)*** (0.096)** (0.107)* (0.108)* (0.105)** (0.107)**

R2 0.001 0.015 0.016 0.016 0.016 0.022

Panel D: Agricultural Households (corn)

Temperature shock year t-1 0.193 0.221 0.218 0.216 0.237 0.245 0.695 12,659
(0.054)*** (0.110)** (0.124)* (0.124)* (0.121)* (0.124)**

R2 0.001 0.017 0.017 0.017 0.0178 0.022

Panel E: Non Agricultural Households

Temperature shock year t-1 0.084 0.030 0.012 0.009 0.012 0.015 0.654 110,747
(0.035)** (0.054) (0.045) (0.043) (0.045) (0.047)

R2 0.000 0.006 0.006 0.006 0.006 0.007

Year + Municipality FE X X X X X
Rainfall Shock year t-1 X X X X
Drought Shock year t-1 X X X X
Crime Shock year t-1 X X X
Municipal characteristics*Year X X
Household characteristics X

Notes: Data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM). The dependent variable is 100 if a household

member migrated in the surveyed year. The independent variable is the number of weeks with a temperature shock (two SD higher than

that week’s historic value in that municipality during the winter season the previous year). Panel A includes all households. Panel B:

agricultural households. A household is defined as agricultural when the household head and at least 50 percent of the members of working

age are employed in agriculture. Panel C: agricultural (seasonal) households. A household is defined as agricultural (seasonal) if it is an

agricultural household and at least 50 percent of the members of working age are employed producing seasonal crops. Panel D: agricultural

(corn) households. A household is defined as agricultural (corn) if it is an agricultural household and at least 50 percent of the members

of working age are employed producing corn. Panel E: non-agricultural households. A household is defined as non-agricultural when the

household head or at least 50 percent of the members of working age are employed in the non-agricultural sector. Municipality controls

are the crime, rainfall, and drought shocks (two SD higher than the historic value during the winter season the previous year).Municipal

characteristics are from 2005 and include poverty and extreme poverty prevalence, average income per capita, percentage of workers in

agriculture, adolescents missing school, percentage of internal migrants and emigrants, and percentage of population under 18 and 18–60

years old. Household controls are age and gender of the household head, and number of household members. Standard errors are clustered

by municipality and year.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A9: Impact of Temperature Shocks on Migration Likelihood – Heterogeneity by Working-Age
Household Member Characteristics

Method 1: Method 2: Method 3: Method 4:
Preferred Household head At least 50% At least one

specification works in of working-age members working-age member
agro sector in agro sector in agro sector

Population Group No Yes No Yes No Yes
(1) (2) (3) (4) (5) (6) (7)

Panel A:Agricultural Households (corn)
Temperature shock year t-1 0.245 -0.003 0.233 0.076 0.172 0.070 0.169

(0.124)** (0.044) (0.105)** (0.068) (0.126) (0.062) (0.126)
Obs 12,659 119,178 21,672 144,023 18,159 134,714 27,468
R2 0.022 0.007 0.019 0.010 0.015 0.011 0.015
Mean 0.695 0.654 0.854 0.882 0.765 0.854 0.939

Year + Municipality FE X X X X X X X
Rainfall Shock year t-1 X X X X X X X
Drought Shock year t-1 X X X X X X X
Crime Shock year t-1 X X X X X X X
Municipal characteristics*Year X X X X X X X
Household characteristics X X X X X X X

Data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM). The dependent variable is 100 if a household member

migrated in the surveyed year. Method 1 uses the preferred specification in which the household is defined as agricultural (corn) if it is an

agricultural household (the household head and at least 50 percent of the members of working age are employed in agriculture) and at least

50 percent of the members of working age are employed producing corn. Method 2 defines an agricultural household (corn) considering

if the head of the household is employed producing corn. Method 3 defines an agricultural household (corn) only considering if at least

50 percent of the working-age members are employed producing corn. Method 4 defines an agricultural household (corn) considering if

one working-age member is employed producing corn. The independent variable is the number of weeks with a temperature shock (two

SD higher than that week’s historic value in that municipality during the winter season the previous year). Municipality controls are

the crime, rainfall, and drought shocks (two SD higher than the historic value during the winter season the previous year). Municipal

characteristics are from 2005 and include poverty and extreme poverty prevalence, average income per capita, percentage of workers in

agriculture, adolescents missing school, percentage of internal migrants and emigrants, and percentage of population under 18 and 18–60

years old. Household controls are age and gender of the household head, and number of household members. Standard errors are clustered

by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A10: Impact of Temperature Shocks in First-Harvest Season on Probability of Migration by Access
to Land

Population Group (1)

Panel A: Agricultural Households (corn)

Temperature shock year t-1 0.245

(0.124)**

Obs 12,659

R2 0.022

Mean 0.695

Panel B: Landowners

Temperature shock year t-1 0.463

(0.403)

Obs 1,887

R2 0.087

Mean 1.219

Panel C: Land tenants

Temperature shock year t-1 0.186

(0.117)

Obs 5,771

R2 0.034

Mean 0.676

Panel D: Other type of land tenure

Temperature shock year t-1 0.423

(0.237)*

Obs 2,989

R2 0.066

Mean 0.736

Panel E: Wage workers

Temperature shock year t-1 0.088

(0.161)

Obs 2,035

R2 0.077

Mean 0.197

Year + Municipality FE X

Rainfall Shock year t-1 X

Drought Shock year t-1 X

Crime Shock year t-1 X

Municipal characteristics*Year X

Household characteristics X

Notes: Data from 2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM). The dependent variable is 100 if a household

member migrated in the surveyed year. The independent variables are the number of weeks with a temperature shock (two SD higher than

that week’s historic value in that municipality during the winter season) in the previous year. Estimations in Panel A include agricultural

households (corn). A household is defined as agricultural (corn) if the household head and at least 50 percent of the members of working

age are employed in agriculture and producing corn. Panel B includes agricultural households (corn) in which at least one member is a

landowner. Panel C includes agricultural households (corn) in which at least one member is a land tenant. Panel D includes agricultural

households (corn) in which at least one member has another type of land tenure but no member is a landowner or a land tenant. Panel E

includes agricultural households (corn) in which no member has access to land. Same controls as in Table A8. Standard errors are clustered

by municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A11: Heterogeneity by Connectivity: EHPM Outcomes

Roads

Panel A: Likelihood of working in the agricultural sector (corn)
Temperature shock t -1.154

(0.475)**
Temperature shock t x Q4 1.082

(0.491)**
Obs 217,421
R2 0.201
Mean 10.719

Panel B: Hours(log)
Temperature shock t 0.006

(0.010)
Temperature shock t x Q4 0.009

(0.013)
Obs 23,306
R2 0.087
Mean 31.990

Panel C: Hourly wage (log(SCP ))
Temperature shock t 0.020

(0.024)
Temperature shock t x Q4 -0.028

(0.031)
Obs 7,889
R2 0.477
Mean 3.769

Panel D: Migration likelihood in agricultural households (corn)
Temperature shock t-1 0.280

(0.233)
Temperature shock t-1 x Q4 -0.106

(0.279)
Obs 6,384
R2 0.019
Mean 0.548
Year + Municipality FE X
Rainfall Shock year t-1 X
Drought Shock year t-1 X
Crime Shock year t-1 X
Municipal characteristics*Year X
Individual or Household controls X

Notes: Individual data from 2009–2018 of EHPM. In panels A, B and C, the sample is constrained the sample for people 10–65 years

old. In Panel A we also restrict the sample to employed individuals; in Panel B and C to individuals working in the agricultural sector

producing corn; in panel D to agricultural households (corn). A household is defined as agricultural (corn) if the household head and at

least 50 percent of the members of working age are employed in agriculture and employed producing corn. The dependent variable in panel

A is 100 if the person is employed in the agricultural sector producing corn; in panel B, is the logarithm of the number of hours worked;

in panel C, is the logarithm of the hourly wage; in panel D, is 100 if a household member migrated in the surveyed year. For panels A, B

and C, the independent variable is the number of weeks with a temperature shock (two sd higher than that week’s historic value in that

municipality during the winter season the same year); for panel D, it is the number of weeks with a temperature shock (two sd higher than

that week’s historic value in that municipality during the winter season the previous year). We restrict the sample to municipalities that

are in the first or fourth quartile of the distribution of the national road network, which contains all the roads in El Salvador. The road

information is provided by the Transport Division of the Infrastructure and Energy Sector (INE) of the IADB, which uses data from Open

Street Maps in 2022. Municipality controls are the number of weeks with rainfall and drought shocks (two sd higher than that week’s

historic value in that municipality during the winter season the same year or the previous year, depending on the independent variable).

We also control for the number of weeks with a crime shock (two sd higher than that week’s historic value in that municipality during the

winter season the same year). Municipal characteristics are from 2005 and include poverty and extreme poverty prevalence, average income

per capita, percentage of workers in agriculture, adolescents missing school, percentage of internal migrants and emigrants, and percentage

of population under 18 and 18–60 years old. Individual controls in Panel A, B and C are gender, age and education. Household controls in

panel D are the age and gender of the household head, and number of household members. We also interact the controls with the dummy

that indicates if the municipality is in the fourth quartile of the corresponding distribution. Standard errors are clustered by municipality

and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A12: Impact of Temperature Shocks on Migration Likelihood – Different Shocks

Population Group 1 SD 1.5 SD Higher 29 Higher 35 HDW

(1) (2) (3) (4) (5) Mean Obs

Panel A: Log(Total Production)

Temperature shock year t -0.029 -0.023 -0.016 -0.022 -0.005 1.917 19,261

(0.013)** (0.014)* (0.008)** (0.015) (0.003)

R2 0.245 0.245 0.244 0.244 0.244

Panel B: Share of workers in the agricultural sector (corn)

Temperature shock year t -0.035 -0.160 -0.157 -0.165 -0.027 9.066 2,239

(0.119) (0.107) (0.109) (0.119) (0.020)

R2 0.759 0.759 0.759 0.759 0.759

Panel C: Log (average hourly wage (SCP )) in the agricultural sector (corn)

Temperature shock year t 0.006 -0.004 0.043 -0.052 -0.010 4.859 1,573

(0.030) (0.028) (0.019)** (0.032) (0.005)*

R2 0.396 0.397 0.398 0.397 0.397

Panel D: Migration Likelihood in agricultural household (corn)

Temperature shock year t-1 0.153 0.298 0.109 0.280 0.047 0.695 12,659

(0.088)* (0.130)** (0.096) (0.092)** (0.020)**

R2 0.022 0.023 0.022 0.022 0.022

Year + Municipality FE X X X X X

Rainfall Shock year t-1 X X X X X

Drought Shock year t-1 X X X X X

Crime Shock year t-1 X X X X X

Municipal characteristics*Year X X X X X

Household characteristics X X X X X

Notes: Estimations in panel A use data from 2013–2018 of El Salvador’s Agricultural Household Survey (ENAMP). The dependent variable

in panel A is the logarithm of the ratio of corn production per hectare in the first harvest. Panels B and C use individual data from

2009–2018 of El Salvador’s Multiple Purpose Household Survey (EHPM) for people 10–65 years old. The dependent variable in panel B

is the share of workers employed producing corn according to the total number of workers for each municipality and year. The dependent

variable in panel C is the logarithm of the average wage in the corresponding sector for each municipality and year, correspondingly. Panel

D uses data from El Salvador’s Multiple Purpose Household Survey (EHPM) 2009–2018. The dependent variable in panel D is 100 if a

household member migrated in the surveyed year. The sample is constrained to agricultural households (corn). A household is defined as

agricultural (corn) if the household head and at least 50 percent of the members of working age are employed in agriculture and employed

producing corn. For Panels A, B, and C: the independent variable in Column (1) is the number of weeks with a temperature shock (one

SD higher than that week’s historic value in that municipality during the winter season the previous year). The independent variable in

Column (2) is the number of weeks with a temperature shock (1.5 SD higher than that week’s historic value in that municipality during the

winter season the previous year). The independent variable in Column (3) is the number of weeks with a temperature shock (higher than

29 ◦C in that municipality during the winter season the previous year). The independent variable in Column (4) is the number of weeks

with a temperature shock (higher than 35 ◦C in that municipality during the winter season the previous year). The independent variable

in Column (5) is the number of weeks with a temperature shock (harmful-degree weeks in that municipality during the winter season the

previous year, where every 1-degree Celsius increase in the average temperature above 32 degrees Celsius corresponds to a one-unit increase

in HDWs.). Panel D presents the same shocks but in the previous year. Same controls as in Table 9. Standard errors are clustered by

municipality and year. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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